
Learning Clause Representation from Dependency-Anchor Graph for
Connective Prediction

Yanjun Gao and Ting-Hao (Kenneth) Huang and Rebecca J. Passonneau
Pennsylvania State University

{yug125,txh710,rjp49}@psu.edu

Abstract

Semantic representation that supports the
choice of an appropriate connective between
pairs of clauses inherently addresses discourse
coherence, which is important for tasks such as
narrative understanding, argumentation, and
discourse parsing. We propose a novel clause
embedding method that applies graph learning
to a data structure we refer to as a dependency-
anchor graph. The dependency anchor graph
incorporates two kinds of syntactic informa-
tion, constituency structure and dependency
relations, to highlight the subject and verb
phrase relation. This enhances coherence-
related aspects of representation. We design
a neural model to learn a semantic representa-
tion for clauses from graph convolution over
latent representations of the subject and verb
phrase. We evaluate our method on two new
datasets: a subset of a large corpus where the
source texts are published novels, and a new
dataset collected from students’ essays. The
results demonstrate a significant improvement
over tree-based models, confirming the im-
portance of emphasizing the subject and verb
phrase. The performance gap between the two
datasets illustrates the challenges of analyzing
student’s written text, plus a potential evalua-
tion task for coherence modeling and an appli-
cation for suggesting revisions to students.

1 Introduction

The clause is a fundamental unit in coherent text.
Much work in NLP investigates how clauses com-
bine to form larger units, ultimately spanning a
whole discourse (Wang et al., 2017; Ji and Eisen-
stein, 2014); how to decompose complex sentences
into distinct propositions (Wang et al., 2018; Li
et al., 2018; Narayan et al., 2017); how to iden-
tify explicit or implicit semantic relations between
clauses (Lee and Goldwasser, 2019; Rutherford
and Xue, 2015), or how to select a connective to
link multiple clauses into a complex sentence (Nie
et al., 2019; Malmi et al., 2018). In this paper, we

P1 Bob cooked Tia a burger. P1, Q1 alth
P2 Bob cooked himself a burger. P1, Q2 bec
Q1 Bob was hungry. P1, Q3 none
Q2 Tia was hungry. P1, Q4 alth
Q3 Bob was thirsty. P2, Q1 bec
Q4 Tia was thirsty. P2, Q2 alth
alth(ough): contrast P2, Q3 alth
bec(ause): precondition P2, Q4 none

Figure 1: For the propositions Pm, Qn to be joined by
although or because, Pm and Qn. must have some se-
mantic commonality to allow for contrast or causation.
Four cases allow although. The two cases that allow be-
cause have a strong semantic relation between the pred-
icates (make someone a burger, be hungry) and, there
is no conflict in the to-object of the first clause and the
subject of the second. The remaining two cases have
no commonality, and neither connective can occur.

focus on clause representation to support accurate
connective prediction, a task which is important
for coherence modeling (Pishdad et al., 2020), fine-
grained opinion mining (Wiegand et al., 2015), ar-
gument mining (Kuribayashi et al., 2019; Jo et al.,
2020) and argumentation (Park and Cardie, 2014).
We present a case for a model that learns from a
novel graph we refer to as a dependency-anchor
graph, which retains information from dependency
parses and constituency parses of input sentences
that is critical for identification of the core proposi-
tion of a clause, while omitting structural informa-
tion that is less relevant.

We assume that determining whether two clauses
can be joined by a connective, and what connective
to choose, depends primarily on the main verb in
each clause, and on the arguments that occur in
both clauses, particularly the grammatical subject.
There are a large number of connectives and con-
nective phrases in English; e.g., the Penn Discourse
Tree Bank (Prasad et al., 2008) has 141. Here we
illustrate the nature of the problem with respect to
the two connectives, although and because. Fig-
ure 1 illustrates how the choice of connective to
join two simple clauses Pm and Qn, and whether

a connective is appropriate at all, depends on the
main verbs and their arguments. Use of although
requires only some dimension of contrast between
the joined clauses, while because requires that Qn

be a precondition for Pm. The table lists two vari-
ants of Pm with cook as the main verb, one with
three distinct entities (Bob, Tia, a burger) and one
with two (Bob, burger). These are considered in
turn with four variants of Qn where the predicate
is either closely related to cook (e.g.be hungry) or
not (e.g., be thirsty), and the two propositions share
an argument or not. In two of the eight cases, nei-
ther connective makes sense because there is no
other cohesive relation (e.g., coreference, associa-
tion) between the clauses. In four cases, there is
some similarity and some contrast, which licenses
although, and in two cases the more restrictive
condition that licenses because is present. These
examples illustrate that both the choice of verb, and
the grammatical relations of the arguments to the
verb, affect whether a connective can be used, and
which one. Adding modifiers on the subject or ob-
ject, or VP or sentence adverbials, would have little
effect on choice of connective in these sentences.

We assume that training clause representations
based on connective prediction will be useful for
developing representations that capture aspects of
coherence, such as those shown in Fig 1. Pish-
dad et al. (2020) examine a series of coherence
evaluation tasks that capture different aspects of
coherence. They argue that connective substitution
is one of four critical tests of coherence modeling.
For example, connectives that express temporal
succession should not be substitutable for connec-
tives that express simultaneity, as doing so would
change the meaning. Studies of students’ writing
skills look at connectives with respect to quality
of students’ argumentative writing (Kuhn et al.,
2016), and whether automated assessments differ
for low-skilled versus high-skilled writers (Perin
and Lauterbach, 2018). Although students can fill
in correct connectives eliminated from source texts,
they typically do not use connectives as precisely
in their own writing (Millis et al., 1993). NLP
applications aimed at supporting student revision
use connectives as an indication of writing qual-
ity (Nguyen et al., 2016; Afrin and Litman, 2018),
but do not help students choose correct connectives.
To better evaluate model performance in connective
selection, and to highlight differences between text
from skillful versus developing writers, we provide

two large datasets of clauses linked by connectives
drawn from published fiction and from students’
written text. We demonstrate the potential for a
model trained on expert data to identify incorrect
uses of connectives in students’ writing, where stu-
dents frequently misuse connectives like and.

Our contributions are: 1) a data structure we
refer to as a Dependency-Anchor graph that incor-
porates information from both dependency and con-
stituency trees; 2) DAnCE (Dependency-Anchor
graph representation for Clause Embedding), a
novel neural architecture that exploits bi-LSTMs
at the lower layers for learning inter-word influ-
ences, and graph learning of relational structure
encoded in the dependency-anchor graph; 3) two
datasets for carefully edited versus student text.
Our approach outperforms the state-of-the-art on
connective prediction.

2 Motivation

The question of whether latent representations of
sentence meaning can benefit from syntax has been
addressed in work that compares recurrence and
recursion, and finds the main benefit of recursive
models to be better treatment of long-distance de-
pendencies (Li et al., 2015). Two recent works
compare tree-based models derived from depen-
dency parses with constituency parses on semantic
relatedness tasks, with no clear advantage of one
grammar formalism over the other (Tai et al., 2015;
Ahmed et al., 2019). As discussed in (Tai et al.,
2015), dependency trees provide a more compact
structure than constituency trees, through shorter
paths from the root to leaf words. Further, all of
a verb’s arguments are its direct dependents. The
recursive structure of constituency trees, on the
other hand, facilitates identification of subtrees that
span more of the leaf words as one moves up the
tree, and that have a compositional contribution to
the meaning of the sentence. Tree-based models
take input from syntactic parses and compose the
latent vectors through a uni-directional traversal,
where the parent node representation is the sum
of the child nodes. For both formalisms, many pa-
rameters are needed to encode the child-to-parent
representations. For this reason, previous work
strictly limits the model dimensionality (Tai et al.,
2015; Ahmed et al., 2019).

To combine advantageous features from both
kinds of grammar formalism, we propose
dependency-anchor graphs as a compact represen-

tation that highlights the core elements of a propo-
sition. We construct a graph with only selected
components from two kinds of parse trees, thus
limiting the number of parameters to learn. The
subject of a clause and the main verb phrase are
the two outer nodes in the graph, where we refer
to the verb phrase node as the anchor. The sub-
ject arc from a dependency parse points from the
anchor node to the subject. The anchor node is a
subgraph that retains the dependency structure of
words within the verb phrase. Other syntactic rela-
tions (e.g., involving words in the subject phrase or
adverbial phrases), are ignored.

To encode the graph, we propose DAnCE,
which applies graph convolution (GCN) (Kipf and
Welling, 2017) to encode the arc between the sub-
ject and verb phrase. The input to the graph convo-
lution comes from a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) that encodes all the
input tokens, including the words outside the sub-
ject and verb phrase. The interaction that DAnCE
captures between subject and verb phrase has been
essential in word representation but missing in tree
based models (Weir et al., 2016; White et al., 2018).

We demonstrate the effectiveness of the
dependency-anchor graph and DAnCE architecture
through its superior performance over baselines, in-
cluding tree-based models. The rest of the paper is
organized as follows: we first present related work
and give a detailed discussion of the Dependency-
Anchor Graph and DAnCE. Then we present the
datasets, experiments and discussion.

3 Related Work

Much research has addressed ways to learn high
quality clause representations. Xu et al. (2015)
propose a shortest dependency path LSTM for sen-
tence representation in the task of relation classifi-
cation. Dai and Huang (2018) propose a BiLSTM
based model that combines paragraph vectors and
word vectors into clause embeddings for a situation
entity classification task. Connective prediction
has often been addressed: Ji and Eisenstein (2015)
and Rutherford et al. (2017) use recursive neu-
ral networks with parse trees as input to predict
connectives and discourse relations, with solid im-
provements on PDTB. Malmi et al. (2018) use a
decomposable attention model to predict connec-
tives on sentences pairs extracted from Wikipedia.
Our work draws on the idea of incorporating syn-
tax into representation for connective prediction,

Figure 2: A dependency-anchor graph for a clause (top right)
is constructed from its phrase-structure parse (top left) and
dependency parse (bottom). Words spanning the VP subtree
of the constituency parse (orange nodes) become a single an-
chor node whose internal structure preserves the dependencies
among words in the VP. The nsubj dependent of the main verb
is promoted to be a dependent of the entire anchor.

specifically for clauses.
Sileo et al. (2019) propose a large dataset with

170M sentence pairs with connectives for unsuper-
vised sentence representation learning, and apply
it on the SentEval task. Nie et al. (2019) develop
universal sentence embeddings from a connective
prediction task, and create a large corpus extracted
from published fiction. They achieve state-of-the-
art performance on predicting connectives, as well
as on sentence embedding benchmarks from Sen-
tEval (Conneau and Kiela, 2018). Our work mod-
ifies the corpus from (Nie et al., 2019) to restrict
the pairs of sentences for connective prediction to
simple sentences. Our goal is to generate clause
embeddings specifically for connective prediction,
rather than universal sentence representation.

4 DAnCE Architecture

The input to DAnCE is a graph for each simple
sentence that includes syntactic information from a
phrase structure parse to identify the VP, and from
a dependency parse to identify the grammatical
subject, and dependencies within the VP.

4.1 Dependency-Anchor graph

The anchor VP and its subject serve as nodes
in a graph, as illustrated in Figure 2. The Stan-
ford CoreNLP dependency grammar has 58 de-
pendency relations, eight of which are a type of
subject (Van Valin, 2001; Schuster and Manning,
2016). The subject in our dependency-anchor
graphs can originate as any of these eight types,
and is represented as a node with a single subject
edge to the anchor. The anchor node has internal
graph structure, that replicates the dependency re-
lations among the words in the VP. We align two
syntax parses by the words then extract the depen-

dencies between words inside the anchor. Each
dependency-anchor graph constitutes a complete
proposition. The dependency relation from the an-
chor to the subject, and the other dependencies for
words within the VP, differentiate words by their
closeness to the root verb of the dependency parse.
Words outside the subject-anchor are omitted from
the graph to maintain the focus of subject-VP, but
they are encoded by the BiLSTM as part of the
sequence and contribute to the hidden states.

4.2 Neural architecture
To learn a semantic representation from a
dependency-anchor graph, DAnCE has the three
layers illustrated in Figure 3. An initial embedding
lookup layer retrieves word embeddings. A BiL-
STM layer captures the hidden states over the input
words at each time step. Finally, a graph convo-
lution layer takes the subject word representation
from the BiLSTM (the S node in Figure 3), and an
anchor embedding that is generated from an sepa-
rate module (the A node in Figure 3), to produce
the final learned semantic representation.

The input sequence of words xi ∈ X is first fed
into a pre-trained word embedding lookup layer,
using GloVe (Pennington et al., 2014), with a bidi-
rectional LSTM of dimension 2D, where D is the
dimension of hidden states in the BiLSTM:

hi = f(xi, hi−1), hi ∈ R2D (1)

The BiLSTM captures long-term dependencies
within the clause. The resulting latent representa-
tion for the subject is fed directly to the graph con-
volution layer. The anchor embedding hA is com-
puted with two alternative settings: Flat-Anchor
(FA) and Graph-Anchor (GA). The main difference
between the two settings is that FA treats the an-
chor as a sequence of words with their BiLSTM
hidden states hi, and ignores the dependency rela-
tions within the anchor. GA turns the dependencies
into an adjacency matrix and then generates hAG

i

as the anchor node representation by encoding the
BiLSTM hidden states within the matrix through
graph attention (GAT) (Velic̆ković et al., 2018).
GAT will attend to whatever nodes are within the
anchor, thus it fits well for learning the anchor rep-
resentation for any length anchor. We first explain
the derivation of hAG

i .
Following (Marcheggiani and Titov, 2017), we

treat the dependency arcs within the anchor as di-
rected. Given the latent representations of a pair
of nodes within the anchor hi, hj , and a one-hot

Figure 3: Overall architecture of DAnCE.

vector for each dependency arc arci,j , we compute
an attention coefficient ei,j :

ei,j = a(W hhi,W
d[hj ||arci,j]) (2)

where || is the concatenation operation, and a, W h,
W d are learned parameters for the head and the
dependent. Then we apply softmax and a Leaky
ReLU activation to normalize the attention weights:

αi.j = LeakyReLU(
exp(ei,j)∑

m∈NA(i) exp(ei,m)
) (3)

where NA(i) represents all nodes in the anchor
that are linked to i, including itself. Leaky Relu
activation on ei,j enables the network to learn the
importance of node j and arc i, j to node i. There-
fore, αi,j is a vector, whose length is the number of
anchor words, that represents differential attention
on word pairs associated with their dependency re-
lations. We apply the attention weights on the node
features from the first BiLSTM layer:

hAG
i =

∑
j∈NA(i)

αi.jW
AGhj (4)

Again, there are two alternative settings to generate
the anchor embedding. We use maxpool over all
the nodes in anchor NA:

hA =

{
Maxpool(||i∈NA

hi) if FA
Maxpool(||i∈NA

hAG
i) if GA

(5)

The third layer applies graph convolution (GCN)
to the subject hidden states from BiLSTM and sub-
ject and anchor nodes, where the subject node is the
hidden state from the BiLSTM and the anchor node
is the anchor embedding hA. Given a node i, we
first compute its GCN node embedding hk+1

Si
from

its neighbor N(i), including a self loop, i ∈ N(i):

hk+1
Si

= ReLu(
∑

j∈N(i)

WSkhSk
j + bSk) (6)

where k represents the k-order neighbor (the max-
imum hop between two nodes). WSk and bSk are
the learned weights and bias. We use k = 1, as
there is only one edge between the subject and an-
chor, thus hk=0

Si
is either the anchor embedding hA

or the BiLSTM output for the subject word. The
node representation is thus more informative by
merging with its relevant neighbor through graph
convolution, and enhances the final aggregation.
Once the GCN node features are obtained, we com-
pute the final embedding hKS as the average over
all node features Nk at the last layer K,

hKS =
1

|NK |
∑

v∈NK

hKv , h
K
S ∈ R2D (7)

5 Data Collection

This section introduces two corpora we use in our
experiments. They differ in genre, size, and distri-
bution of connectives, as well as a contrast between
spontaneous student writing and carefully edited
text. They also differ in the way they were anno-
tated, and in whether they include negative exam-
ples. DeSSE (Decomposed Sentences from Student
Essays) consists of sentences from students’ opin-
ion essays, 78% of which are complex. The anno-
tation of DeSSE rewrites complex sentences into
atomic tensed clauses, omitting any discourse con-
nectives. Sentences are considered complex if there
are at least two clauses with tensed verbs, thus a
sentence consisting of a subject, verb and its clausal
argument are not considered complex. The cor-
pus also includes complex sentences with relative
clauses rather than connectives, which serve as
negative examples for connective prediction. We
assume that a model should be able to discriminate
between cases where two clauses have a cohesive
relation other than one given by a connective. This
is analogous to the motivation for inclusion of ad-
versarial examples in a recent corpus for natural
language arguments (Niven and Kao, 2019). In that
work, it was shown that transformer models that
appeared to perform well without the adversarial
examples were exploiting accidental correlations,
given that performance degraded significantly once
adversarial examples were included. Previous work
has shown similar results that neural models for
summarization learn more about the position of
lead sentences in news articles than about the ac-
tual meanings of sentences, due to the lead bias in
news (Kedzie et al., 2018).

Dataset Size Avg Length Vocab
Book-Simpl 644k 7.61 52,957
DeSSE 70k 10.19 11,186

Table 1: Descriptive statistics comparing Book-Simpl and
DeSSE, including the number of clause pairs (Size), average
clause length, and vocabulary size.

DeSSE consists of 39K source sentences, with
68 connectives of the 141 connective words and
phrases identified in PDTB. Most connectives oc-
cur with very low frequency. More than 50% of
pairs are connected by and, punctuation, or no con-
nective. Fifty-five of the 68 connectives are rare
with frequencies below 1% of the total. A detailed
distribution is shown in appendix A.1

Our second corpus is a modification of the Book
corpus, which consists of connective prediction
data taken from published novels (Nie et al., 2019).
The Book corpus extracts pairs of simple or com-
plex sentences from source texts, where a connec-
tive linked the pair. The original Book corpus con-
tains 15 connectives, and two subsets of 8 and 5
connectives. We created subsets consisting of con-
nectives that joined simple clauses: Book-Simpl 5
with their 5 connectives (285K clause pairs), and
Book-Simpl 8 with their 8 (359K clause pairs).

Table 1 shows that the average clause length for
DeSSE is longer than in Book-Simpl, with one-fifth
the total vocabulary. In comparison to Book-Simpl,
the language in DeSSE is less formal and coherent.

5.1 DeSSE

DeSSE includes identification of complex sen-
tences with tensed clauses, and excludes infinitival
or gerundive clauses, as a first step towards training
corpora for clause identification. It covers a wide
range of intra-sentential syntactic and semantic phe-
nomena. It includes all tensed clauses occurring
in conjoined structures, including subordinating
conjunctions, along with relative clauses, paren-
theticals, and conjoined verb phrases. It excludes
clausal arguments of verbs, because the semantic
relationship of the clausal argument in its sentence
is given by the verb semantics. The annotation pro-
cess is unique in that it involves identifying where
to split the source sentence into distinct clauses,
and how to rephrase the source sentence into a set
of complete, independent clauses that omit any dis-
course connectives. It is designed for developing

1DeSSE is available at https://github.com/
serenayj/DeSSE. DAnCE is available at https://
github.com/serenayj/DAnCE.

https://github.com/serenayj/DeSSE
https://github.com/serenayj/DeSSE
https://github.com/serenayj/DAnCE
https://github.com/serenayj/DAnCE

1. (If you have not experienced what they have experi-
enced), then you will never truly understand.

2. (I believe that talking about race more in a civil way
can only improve our society), but I can see why other
people may have a different opinion.

Figure 4: Original sentences from DeSSE with intra-
sentential connectives, where the clause preceding the con-
nective contains a relative clause (example 1), or a clausal
argument of the main verb (example 2).

Figure 5: Example annotation from DeSSE. Annotators first
split a sentence into segments (underlined text), then rewrite
the segments into complete sentences, omitting connectives.

connective prediction, sentence segmentation and
decomposition, and semantic representation.

Figure 4 illustrates intra-sentential connectives
(then, but) that join two clauses. In example 1), the
first clause (in parentheses) contains a free relative
clause as a verb argument (in italics). In example
2), the first clause contains a clausal argument of
the main verb. In both cases, however, the entire
first clause is the first argument of the connective.2

We collected over 17,000 opinion essays written
by U.S. university students in a large undergradu-
ate social science class. Students watched video
clips about race relations, and wrote essays in a
blog environment to share their opinions with the
class. We selected 39K sentences out of 173K for
annotation, corresponding to the first 3,592 essays.

Amazon Mechanical Turk (AMT) is a popular
crowdsourcing platform for NLP annotation. While
it facilitates data collection, using untrained anno-
tators requires care. In a series of pilot tasks on
AMT, we iteratively designed annotation instruc-
tions and an annotation interface, while monitoring
quality. Figure 5 illustrates two steps in the annota-
tion: identification of n split points between tensed
clauses, and rephrasing the source into n+1 simple
clauses, where any connectives are dropped. The
final version of the instructions describes the two
annotation steps, provides a list of connectives, and

2As in (Webber and Joshi, 1998), we take connectives to
be predicates whose arguments are the clauses they join.

illustrates a positive and negative example.3

The ten most frequent connectives in DeSSE are
and, because, when, as, so, or, for, if, also, but. We
postprocess the corpus to identify pairs of clauses
from complex sentences, and any connectives. The
resulting dataset has the following distribution: a
single atomic clause (22%), two clauses (45%) or
more than two clauses (33%). Given sentences
with exactly two atomic clauses in the source, 30%
joined them with a discourse connective.

5.2 Book-Simpl

Nie et al. (2019) presented the Book corpus, which
has 15 frequently used connectives and 4.7M pairs
of sentences. Their goal was to exploit the semantic
relationship given by the connective prediction task
to improve sentence representation, as noted above.
The Book corpus contains two versions, Book-5
with 5 connectives: and, but, if, because, when; and
Book-8, an extended version with 3 more connec-
tives: before, though, so. The sentences linked by
a connective can be simple or complex.

To create a subset of the Book corpus that is
more parallel to DeSSE, we selected Book corpus
examples where the connective linked two simple
clauses. The new Book-Simpl dataset has a distri-
bution of connectives similar to the Book corpus
(see appendix A).

6 Experiments

For our experiments to predict connectives, we
use the same classifier used in (Nie et al., 2019).
An input pair of sentence vectors representing the
clauses to be joined by a connective are concate-
nated with vectors resulting from three pairwise
vector operations: averaging, subtraction and mul-
tiplication. The concatenated vectors are fed into
three fully-connected layers, then projected to a
lower dimension prior to softmax over the classifi-
cation categories.

Experiments on Book-Simpl predict the cor-
rect connective, given positive examples of clause
pairs. Experiments on DeSSE predict the correct
connective, given positive and negative examples.
We compare DAnCE with four baselines on both
datasets, reporting accuracy and F1. Student writ-
ing is much less coherent than much of the text that
applies NLP to tasks related to discourse structure,

3The interface checked for connectives remaining in step
two to warn annotators. Details about the interface and quality
control are included in appendix B.

Group Model Book-Simpl 5 Book-Simpl 8 DeSSE 5 DeSSE 8
Acc. (σ) F1 Acc. (σ) F1 Acc. (σ) F1 Acc. (σ) F1

BoW CNN 61.89 (1.64) 49.70 46.31 (1.36) 30.62 53.57 (0.27) 17.70 42.95 (0.22) 9.18
SeqLSTM DisSent 68.58 (1.55) 58.78 62.92 (1.39) 48.11 48.93 (0.31) 25.27 39.86 (0.30) 15.91
Tree Tree 67.95 (1.10) 59.67 59.69 (1.58) 45.71 20.35 (0.74) 9.84 16.63 (0.77) 9.29
LSTM Tr-Attn 69.08 (0.82) 62.30 63.48 (1.40) 49.06 18.51 (0.10) 8.68 17.95 (0.72) 12.01
DAnCE FA 71.83 (0.45) 63.59 65.60 (0.55) 51.26 52.64 (0.38) 22.29 41.75 (0.25) 13.88
Models GA 71.51 (1.45) 59.93 65.38 (1.57) 50.28 53.48 (0.46) 14.73 12.01 (0.48) 9.16

Table 2: Performance of baselines and our models on Book-Simpl 5 (N=16,538), Book-Simpl 8 (N=18,946), DeSSE 5 (N=3,466)
and DeSSE (N=3,894).

such as discourse connective prediction, discourse
parsing, and semantic representation of clauses. We
find all models perform better on Book-Simpl than
DeSSE, and DAnCE-FA yields good performance
on both corpora.

6.1 Baselines and settings

We use three kinds of architecture as baselines:
Bag-of-words feed-forward networks (BoW), Tree-
based LSTM (Tree-LSTM), and sequential LSTM
(Seq-LSTM). For BoW group, we include Glove-
CNN (Kim, 2014), a widely used convolutional
network for text classification that takes word
vectors as input and generates sentence vectors.
The Tree-LSTM group includes two models: De-
pendency Tree-LSTM (Tree) (Tai et al., 2015),
which encodes the dependency parse, and an im-
proved version of Tree-LSTM with attention (Tr-
Attn) (Ahmed et al., 2019). The Seq-LSTM group
consists of DisSent (Nie et al., 2019; Conneau et al.,
2017), a BiLSTM model with max-pooling over
all hidden units of sentences, and self attention.
Hyperparameters are shown in Appendix D.

Our experiments ask two questions: 1) How does
DAnCE, which relies on graph convolution, and
whose input is a Dependency-Anchor graph, com-
pare with tree-based models? 2) How does DAnCE
compare against the two types of models that do
not rely on syntax (sequence-based and BOW). The
two anchor settings for DAnCE enable us also to
test alternative DAnCE settings (DAnCE-FA and
DAnCE-GA). Our question here is whether learn-
ing from dependency relations within verb phrases
through graph attention produces better representa-
tions for connective prediction. 4

6.2 Results

Table 2 reports mean accuracy and the standard
deviation from 16 bootstrapped iterations on 90%

4We attempt to train a fine-tune BERT on our dataset,
however due to the size of the training set we make no success
in finetuning.

of the test data, and F1 for the full test data. Boot-
strapped F1 standard deviation shows the same
magnitude as accuracy therefore is omitted from
the table. Overall, all models report higher accu-
racy and F1 on Book-Simpl than DeSSE, which
suggests that including “no connectives" increases
the difficulty of the learning task. For Book-Simpl,
increasing the number of connectives also increases
the prediction difficulty, reflected in lower accuracy
and F1 scores for all models on Book-Simpl 8 in
comparison to Book-Simpl 5. DAnCE outperforms
all baselines, DisSent falls between the two tree
variants, and the BoW model has the lowest perfor-
mance. On DeSSE 5 and 8, however, it is the BoW
model that shows the highest accuracy. DisSent
achieves the highest F1 on both versions of DeSSE.
DAnCE-FA has higher accuracy but slightly lower
F1 than DisSent, and both greatly outperform the
two tree models and DAnCE-GA.

Recall that DeSSE includes adversarial samples,
hence evaluation on DeSSE may be more revealing
in comparison to Book-Simpl. Figure 6 gives a
breakdown of F1 by connective on DeSSE 5 and
8 for DAnCE-FA, DisSent and Tree-Attn. It is
surprising that for DeSSE 5, Tree-Attn fails com-
pletely on and, so, as, while it outperforms DisSent
and DAnCE-FA on because, no connective. On
DeSSE 8, Tree-Attn fails to predict and, for, if.
DAnCE-FA and DisSent have similar F1 scores

Figure 6: Breakdown of F1 scores on DeSSE 5 (top) and
DeSSE 8 (bottom) from DAnCE-FA, DisSent and Tree-Attn.

DAnCE-GA Book-Simpl (F1) DeSSE (F1)
Settings 5 8 5 8
-GCN 65.32 37.85 7.75 5.63
-DIR 58.34 47.85 17.44 11.75

Table 3: Ablation studies of DAnCE.

DeSSE 5 DeSSE 8
(Obs, Pred) Pairs (Obs, Pred) Pairs
(and, but) 24.0% (and, but) 18.0%
(and, and) 17.0% (and, and) 12.0%
(because, but) 7.8% (None, but) 7.3%
(None, but) 6.8% (because, but) 5.6%
(so, but) 4.1% (and, when) 4.8%

Table 4: For all pairs of sentences in the DeSSE test sets, we
compare the observed student’s usage (Obs) with the model
prediction (Pred) from DAnCE-FA trained on Book Simpl, and
sorted each pattern of observation and prediction by frequency.
The five most frequent of these patterns are shown here for
DeSSE 5 and DeSSE 8.

on and, when, if, but DAnCE-FA rarely or never
predicts the connectives so, for and as. It may be
that subtle differences in meaning based on sen-
tence elements apart from the subject and verb
phrase are predictive, given the failure of DAnCE-
FA to perform at all well on these connectives. To
summarize, DAnCE-FA performs comparably to
DisSent and shows improvements over tree-based
models. DAnCE-GA is worse than DAnCE-FA,
which might be attributed to the noisy information
introduced by dependency arcs within the anchor.

6.3 Ablation Experiment

We conducted an ablation test on DAnCE-GA to
address the following questions: 1) does the per-
formance drop if subject and verb are not high-
lighted? and 2) do undirected dependency arcs
result in better performance within the anchor. To
address the first question, we remove the GCN
layer (-GCN). To address the second, we remove
the directionality of dependency arcs inside the
anchor to produce a symmetric adjacency matrix
(-DIR). Table 3 presents F1 scores on the for sets
of connectives from Book-Simpl and DeSSE. Com-
pared to the DAnCE variants presented in Table 2,
removing the emphasis on subject and verb sig-
nificantly lowers the performance, especially on
DeSSE. Using a symmetric adjacency matrix for
graph attention results in lower performance on
Book-Simpl, but surprisingly higher F1 on DeSSE.
This shows that our emphasis on the subject and
verb phrase enhances clause representation. How-
ever, incorporating more dependency arcs within
the anchor degrades the performance.

Clause.1 He said he grew up as a Christian.
Clause.2 He then converted to Islam.
Student and DAnCE-FA but
Clause.1 He trusted his faith.
Clause.2 It helped him move on.
Student and DAnCE-FA because

Table 5: Example pairs of clauses from DeSSE 5, showing
the connective used by the student alongside the prediction
from DAnCE-FA trained on Book Simpl 5.

7 Discussion

Here we discuss the potential to suggest an alter-
native connective for students when their choice
of connective differs from a connective predicted
by a model that has been trained on profession-
ally written text. The benefits of this analysis are
two-fold: it explores the feasibility of an education
application to help students revise their choice of
connective, and it allows us to examine DAnCE’s
ability to model aspects of coherence that pertain
to choice of connective. For all pairs of sentences
in DeSSE 5 and 8, we compared the observed
choice made by the student writer with the pre-
diction from DAnCE-FA trained on Book Simpl 5
or Book Simpl 8. Table 4 shows the five most fre-
quent pairs of student choice in DeSSE 5 or DeSSE
8 versus the prediction from the model trained on
Book Simpl 5 (left columns) or trained on Book
Simpl 8 (right columns). As illustrated, in many
of the cases where students used and, the model
trained on text from professional writers predicts
but. Figure 5 shows a few examples where a stu-
dent used the semantically neutral conjunction and,
the model predicted a more specific conjunction,
and the model’s prediction seems more precise. Fu-
ture work will investigate in detail the feasibility of
suggesting alternative connectives.

8 Conclusion

This paper presented the dependency-anchor graph,
a new data structure emphasizing the propositional
structure of clauses, and DAnCE, a neural archi-
tecture with a distinct module for learning verb
phrase representation, and graph convolution for
semantic relation between the verb phrase and its
subject.DAnCE shows good performance on two
datasets for connective prediction, and introduces a
potential application that could help students revise
their writing through improved choice of connec-
tives. Future work will extend DAnCE for coher-
ence modeling within and across sentences, and for
applications to support students’ revisions.

References
Tazin Afrin and Diane Litman. 2018. Annotation

and classification of sentence-level revision improve-
ment. In Proceedings of the Thirteenth Workshop on
Innovative Use of NLP for Building Educational Ap-
plications, pages 240–246.

Mahtab Ahmed, Muhammad Rifayat Samee, and
Robert E. Mercer. 2019. Improving tree-LSTM with
tree attention. In 2019 IEEE 13th International Con-
ference on Semantic Computing (ICSC), pages 247–
254. IEEE.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Zeyu Dai and Ruihong Huang. 2018. Building context-
aware clause representations for situation entity type
classification. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3305–3315.

Chris Fournier. 2013. Evaluating text segmentation us-
ing boundary edit distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion learning for text-level discourse parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13–24, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associa-
tion for Computational Linguistics, 3:329–344.

Yohan Jo, Elijah Mayfield, Chris Reed, and Eduard
Hovy. 2020. Machine-aided annotation for fine-
grained proposition types in argumentation. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 1008–1018.

Chris Kedzie, Kathleen McKeown, and Hal Daumé III.
2018. Content selection in deep learning models of

summarization. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1818–1828, Brussels, Belgium.
Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Deanna Kuhn, Laura Hemberger, and Valerie Khait.
2016. Tracing the development of argumentive writ-
ing in a discourse-rich context. Written Communica-
tion, 33(1):92–121.

Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Kentaro
Inui. 2019. An empirical study of span representa-
tions in argumentation structure parsing. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4691–4698.

I-Ta Lee and Dan Goldwasser. 2019. Multi-relational
script learning for discourse relations. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4214–4226,
Florence, Italy. Association for Computational Lin-
guistics.

Jing Li, Aixin Sun, and Shafiq Joty. 2018. SegBot: a
generic neural text segmentation model with pointer
network. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI),
pages 4166–4172.

Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Ed-
uard Hovy. 2015. When are tree structures necessary
for deep learning of representations? In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2304–2314.

Eric Malmi, Daniele Pighin, Sebastian Krause, and
Mikhail Kozhevnikov. 2018. Automatic prediction
of discourse connectives. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1506–1515.

Keith K Millis, Arthur C Graesser, and Karl Haberlandt.
1993. The impact of connectives on the memory
for expository texts. Applied Cognitive Psychology,
7(4):317–339.

Shashi Narayan, Claire Gardent, Shay Cohen, and
Anastasia Shimorina. 2017. Split and rephrase. In
EMNLP 2017: Conference on Empirical Methods in
Natural Language Processing, pages 617–627.

https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.3115/v1/P14-1002
https://doi.org/10.3115/v1/P14-1002
https://doi.org/10.18653/v1/D18-1208
https://doi.org/10.18653/v1/D18-1208
https://doi.org/10.18653/v1/P19-1413
https://doi.org/10.18653/v1/P19-1413

Huy Nguyen, Wenting Xiong, and Diane Litman. 2016.
Instant feedback for increasing the presence of solu-
tions in peer reviews. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 6–10.

Allen Nie, Erin Bennett, and Noah Goodman. 2019.
DisSent: Learning sentence representations from ex-
plicit discourse relations. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4497–4510.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4658–4664.

Joonsuk Park and Claire Cardie. 2014. Identifying
appropriate support for propositions in online user
comments. In Proceedings of the first workshop on
argumentation mining, pages 29–38.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Dolores Perin and Mark Lauterbach. 2018. Assessing
text-based writing of low-skilled college students.
International Journal of Artificial Intelligence in Ed-
ucation, 28(1):56–78.

Leila Pishdad, Federico Fancellu, Ran Zhang, and Af-
saneh Fazly. 2020. How coherent are neural mod-
els of coherence? In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6126–6138.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC. Citeseer.

Attapol Rutherford, Vera Demberg, and Nianwen Xue.
2017. A systematic study of neural discourse mod-
els for implicit discourse relation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 281–291.

Attapol Rutherford and Nianwen Xue. 2015. Improv-
ing the inference of implicit discourse relations via
classifying explicit discourse connectives. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
799–808.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced English universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371–2378.

Damien Sileo, Tim Van De Cruys, Camille Pradel,
and Philippe Muller. 2019. Mining discourse mark-
ers for unsupervised sentence representation learn-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3477–3486, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566.

Robert D. Van Valin. 2001. An introduction to syntax.
Cambridge University Press.

Petar Velic̆ković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lió, and Yoshua Bengio.
2018. Graph attention networks. In Sixth Inter-
national Conference on Learning Representations
(ICLR).

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017.
A two-stage parsing method for text-level discourse
analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 184–188.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 962–967.

Bonnie Webber and Aravind Joshi. 1998. Anchoring
a lexicalized tree adjoining grammar for discourse.
In ACL/COLING Workshop on Discourse Relations
and Discourse Markers, pages 86–92.

David Weir, Julie Weeds, Jeremy Reffin, and Thomas
Kober. 2016. Aligning packed dependency trees: a
theory of composition for distributional semantics.
Computational Linguistics, 42(4):727–761.

Aaron Steven White, Rachel Rudinger, Kyle Rawlins,
and Benjamin Van Durme. 2018. Lexicosyntactic
inference in neural models. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4717–4724.

Michael Wiegand, Marc Schulder, and Josef Ruppen-
hofer. 2015. Opinion holder and target extraction
for verb-based opinion predicates–the problem is
not solved. In Proceedings of the 6th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 148–155.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long

https://doi.org/10.18653/v1/N19-1351
https://doi.org/10.18653/v1/N19-1351
https://doi.org/10.18653/v1/N19-1351

short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 conference
on empirical methods in natural language process-
ing, pages 1785–1794.

A Connective distributions in
Book-Simpl and DeSSE

Figure 7: Connective distributions in DeSSE with
threshold 1%

Here we present a detailed statistics of connec-
tive distributions on DeSSE and Book-Simpl. Fig-
ure 7 presents the connectives from DeSSE with
distribution above 1%. Among 68 connectives,
there are thirteen connectives above the threshold
and the rest are low frequency connectives. Ta-
ble 6 shows the Book-Simpl connective distribu-
tion compared to Book corpus. As illustrated, the
Book-Simpl shares the same distribution as Book
corpus on both Book-Simpl 5 and 8.

B Annotation instruction in DeSSE

Here we present the instructions for annotators, as
shown by Figure 8.

Figure 8: Instruction for DeSSE annotation

The instruction illustrate the two phases of anno-
tation. The annotator first chooses whether to add

one or more split points to an input sentence, where
the word after a split point represents the first word
of a new segment. Once an annotator has identified
the split points, which happens on the first page of
the AMT interface, shown as Figure 9, a second
view of the interface appears. Figure 10 shows the
second view when annotators rewrite the segments.
Every span of words defined by split points (or
the original sentence if no split points), appears in
its own text entry box for the annotator to rewrite.
Annotators cannot submit if they remove all the
words from a text entry box. They are instructed to
rewrite each text span as a complete sentence, and
to leave out the discourse connectives.

Figure 9: Interface of splitting the sentence

Figure 10: Interface of rewriting the segments from Fig-
ure 9 into complete sentences

Several auto-checking and warnings are applied
in the interface to reassure the quality. If a rewrite
contains a discourse connective, a warning box
pops up asking if they should drop the discourse
connective before submitting it. A warning box
will show up if annotators use vocabulary outside
the original sentence. To prevent annotators from
failing to rewrite, we monitored the output, check-
ing for cases where they submitted the text spans
with no rewriting. Annotators are prohibited to sub-
mit if the interface detects an empty rewrite box or

Corpus Size and but because if when before though so
Book 5 3054K 31 32 15 5 16 na na na
Book-Simpl 5 285k 33 28 8 5 27 na na na
Book 8 3435K 28 28 5 13 14 6 3 2
Book-Simpl 8 359K 29 24 4 7 23 8 3 1

Table 6: Number of sentence pairs (Size), and the distribution of connectives (as percentages) for the original Book
corpus and our modified version.

the total lengths of the rewrites are too short com-
pared to the source sentence. We warned annotators
by email that if they failed to produce complete sen-
tences in the rewrite boxes, they would be blocked.
Some annotators were blocked, but most responded
positively to the warnings.

C Quality control in DeSSE

To test the clarity of instruction and interface, the
initial 500 sentences were used for evaluating the
task quality, each labeled by three turkers (73 turk-
ers overall), using three measures of consistency,
all in [0,1]. Average pairwise boundary similar-
ity (Fournier, 2013), a very conservative measure
of whether annotators produce the same number
of segments with boundaries at nearly the same
locations, was 0.55. Percent agreement on number
of output substrings was 0.80. On annotations with
the same number of segments, we measured the
average Jaccard score (ratio of set intersection to
set union) of words in segments from different an-
notators, which was 0.88, and words from rephras-
ings, which was 0.73. With all metrics close to 1,
and boundary similarity above 0.5, we concluded
quality was already high. During the actual data
collection, quality was higher because we mon-
itored quality on daily basis and communicated
with turkers who had questions.

D Experiment Settings

All the methods take GloVe word embeddings as
input. Due to the size difference between Book-
Simpl and DeSSE, we use different dimensionali-
ties for the word embeddings (w) and classifier hid-
den layers (h) with the two corpora on all baseline
systems: for Book-Simpl, Dw = 300, Dh = 512;
for DeSSe Dw = 100, Dh = 256. We train Dis-
Sent using the originalDh = 4096 for Book-Simpl,
and reduce it to 256 for DeSSE. Apart from this one
change to DisSent, we use the published settings
for all baseline systems. We train DAnCE using the
same vector dimensions as for DisSent. Because
DAnCE has twice the number of parameters as Dis-
Sent, we use the smaller classifier dimensionality

of 256 on both corpora.
We use SGD as optimizer for DAnCE, with

the learning rate at 0.01. Learning rates between
[0.1,0.001] did not show obvious performance dif-
ferences, and 0.01 converged faster. We use early-
stopping to prevent overfitting. We did not use
dropout, due to a negative impact on performance
(cf. (Nie et al., 2019)).

All training is done on 4 Nvidia RTX 2080 Ti
GPUs. The longest training time is 35 hours, for
DAnCE on Book-Simpl 8. During testing, we per-
form 16 bootstrap iterations

