
Human Computation (2019) 6:1:113-146
© 2019, Huang, Azaria, Romero & Bigham. CC-BY-3.0

ISSN: 2330-8001, DOI: 10.15346/hc.v6i1.7

InstructableCrowd: Creating IF-THEN Rules for
Smartphones via Conversations with the Crowd

TING-HAO K. HUANG, PENNSYLVANIA STATE UNIVERSITY

AMOS AZARIA, ARIEL UNIVERSITY

OSCAR J. ROMERO, CARNEGIE MELLON UNIVERSITY

JEFFREY P. BIGHAM, CARNEGIE MELLON UNIVERSITY

ABSTRACT

Natural language interfaces have become a common part of modern digital life. Chatbots utilize
text-based conversations to communicate with users; personal assistants on smartphones such as
Google Assistant take direct speech commands from their users; and speech-controlled devices such
as Amazon Echo use voice as their only input mode. In this paper, we introduce InstructableCrowd,
a crowd-powered system that allows users to program their devices via conversation. The user
verbally expresses a problem to the system, in which a group of crowd workers collectively respond
and program relevant multi-part IF-THEN rules to help the user. The IF-THEN rules generated by
InstructableCrowd connect relevant sensor combinations (e.g., location, weather, device acceleration,
etc.) to useful effectors (e.g., text messages, device alarms, etc.). Our study showed that non-
programmers can use the conversational interface of InstructableCrowd to create IF-THEN rules
that have similar quality compared with the rules created manually. InstructableCrowd generally
illustrates how users may converse with their devices, not only to trigger simple voice commands,
but also to personalize their increasingly powerful and complicated devices.

1. INTRODUCTION

Intelligent personal computing devices – such as smartphones, smartwatches, digital assistants (e.g.,
Amazon’s Echo) and wearables (e.g., Google Glass) – have become ubiquitous in society due to the
power and convenience they offer. These devices are useful as shipped, but getting the most out
of them requires tailoring them to their owner’s preferences and needs. For example, after buying
a smartphone, the user will usually first spend time customizing it by changing the wallpaper or
adjusting the home screen layout. The same behavior is seen with nearly all other electronic devices,
including personal assistants, tablets, laptops, and digital cameras. A great deal of customization
takes place when the device is new, but the tuning process also usually continues at a slower pace

http://dx.doi.org/10.15346/hc.v6i1.7

114 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

I was late for a meeting this
morning, and I don't want
that to happen again...

Why were you late?

The meeting is really early
and I totally forgot about it.

Would you like to automatically
set an alarm for earlier?

...

User Crowd

Workers

Worker’s

Interface

If/Then

Rules

Send to User’s Phone

Figure 1. Users have a conversation with InstructableCrowd to create If/Then rules that then
run on their phone to solve problems. The backend system is run by synchronous crowd workers

who respond to the user, ask follow up questions, and create rules. Users can then review the
rules on their phone to make sure they were what they wanted.

over time as users adjust their devices in response to changing needs, the availability of new software
or functionality, or shifts in personal circumstances. For example, a new security threat may lead to
installing better firewall software; a near-miss with severe weather may prompt the user to change
local weather alert preferences; and moving to a new city may lead to changing the parameters
on travel or map software to reflect the user’s new location. Users manually adjust the long-term
behavior of their devices in order to better fit their own behavior.

As important as customization is, however, it is often held back by a variety of user difficulties. One
is that devices are becoming ever more complicated: new features and capabilities provide power
and flexibility, but at the cost of complexity. Customizing a device often requires the user wading
through complex, multi-layer menus, searching for the right app, or experimenting with poorly
explained settings. All of this can be confusing and intimidating. Furthermore, getting the most from
a device usually requires programming it to react intelligently to events and automate responses, and
many users find programming to be difficult and even frightening. The complexity of devices also
means that even a small adjustment to a system’s long-term behavior through programming could
result in unintended consequences to the user’s experience (when compared with simple, one-time
interactions such as setting an alarm). Thus, the more complex the interaction with the device, the
more important are high accuracy and robustness in understanding the user’s needs.

One technology has significant potential for addressing these problems is natural language interface.
Users could much more easily customize and even automate their devices if they could simply speak
to them rather than wading through instruction manuals, menu trees, and tutorials. And in fact,
natural language interfaces have become a common part of modern digital life already. Chatbots
utilize text-based conversations to communicate with users; personal assistants on smartphones such
as Google Assistant take direct speech commands from their users; and speech-controlled devices
such as Amazon Echo use voice as their only input mode.

In this exploratory project, we introduce InstructableCrowd, a crowd-powered system that allows

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 115

users to program their devices and thus change their longer-term behavior via a natural language
interface. InstructableCrowd is based around two key design decisions that address the main
problems with device customization and automation outlined above. First, we have focused on
creating relatively simple programs that are easy to use. Second, we make use of crowd workers to
operate the natural language interface instead of using automated systems, since humans are much
better at understanding and interpreting complex user requirements than current electronic systems.

Our programming system is oriented around relatively simple IF-THEN rules, also known as trigger-
action rules. Modern smart devices, especially smartphones, contain a wealth of sensors and effectors
that can be combined to perform useful customized tasks for their users. For example, they could be
used to go beyond simple, static programming (such as setting a wake-up alarm to go off at a specific
time every weekday) to customizations that are based on inputs and status information (like adjusting
a wake-up alarm based on traffic conditions).

A prominent example of this type of rule-based system is the mobile application IFTTT (If This
Then That, ifttt.com). The service enables users to author simple trigger-action rules that contain
only one trigger (e.g., a post on Twitter) and one action (e.g., synchronizing the latest Twitter post to
Facebook) (IFTTT May 20, 2017). The service is obviously useful — it has millions of users (IFTTT
May 20, 2017) — and its simplicity makes it easy to use. However, that same simplicity also means
that the system fails to cover many real-world scenarios (Huang and Cakmak, 2015; Daniel et al.,
2012; Ur et al., 2014). Research has shown that 22% of behaviors that people came up with require
more than one sensor or effector (Ur et al., 2014). The complexity of rules people would like to
create is likely to only increase as services like IFTTT continue to be integrated with other services
and more devices. Therefore, in this project we focus on an extended version of IFTTT-style rules, in
which the IF and THEN can each contain more than one sensor/effector.

With the awareness of the limitation of automated dialog systems, we developed a crowd-powered
conversational agent. InstructableCrowd allows end users to create rich, multi-part IF-THEN rules
via conversation with the crowd (Figure 1). A group of crowd workers is recruited on demand to talk
with a user and create rules based on the conversation. With intelligent workers on a rich desktop
interface supporting users, the interface can be simplified into a familiar speech or text chat client,
allowing the system to be used on the go via mobile and wearable devices. Furthermore, users can
discuss their problems with the crowd and get feedback to refine their requests. Users may know
their problems, but not know what solutions would best resolve them. The crowd can help users
identify possible solutions that the user didn’t even know existed, and then create the rules needed to
implement them. InstructableCrowd then lets users edit and improve the created rules. Controlled
experiments showed that users are able to create complex rules using InstructableCrowd.

Through InstructableCrowd, we introduce a new method for enabling end users to program complex
interactions with the wealth of sensors and effectors on their smartphones and other devices, which
may have broader implications for the future of programming with speech.

2. RELATED WORK

InstructableCrowd is related to prior work on (i) end-user programming, (ii) crowd-powered conver-
sational agents, and (iii) automatic IF-THEN rules generation.

116 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

2.1. End-User Programming

InstructableCrowd builds upon the long history of research and products in end-user program-
ming (Lieberman et al., 2006), which aims at enabling non-programmers to author or compose their
own applications. Early works in this field started from database (Hanson and Widom, 1993) and
email management (Mackay et al., 1989), and later gradually became more common as more and
more senors and effectors became available to general users (Bolchini et al., 2007; Bronsted et al.,
2010; Brush et al., 2011; Dahl and Svendsen, 2011). For instance, CoScripter allowed end-users
to program scripts by demonstration (Leshed et al., 2008; Bigham et al., 2009). CoScripter used
its corpus of scripts to allow easier creation of new actions from mobile devices (Lau et al., 2010);
Sikuli is another famous end-user programming project (Yeh et al., 2009). Sikuli allows users to
take a screenshot of a GUI element (e.g., a toolbar button) and then directly use it as an element in a
programming script to control the GUI’s behavior (e.g., clock the button.)

Trigger-action programming is one simple model of end user programming that the user form a new
functionality by combining pre-defined triggers (sensors of “IF”) with pre-defined actions (effectors
of “THEN”). Many solutions were proposed to realize trigger-action programming, such as using
existing notations of business processes modeling (BPM) to represent rules (Brambilla et al., 2012),
adopting an effective workflow to create rules (Jara et al., 2013; Kokciyan et al., 2012), or solutions
for domain-specific applications (Daniel et al., 2012). The IFTTT project has had great success by
simplifying the composition among two applications and providing a user-friendly workflow and
interface on mobile phones. The concept of IFTTT has also been extended and adopted for use in
various other domain, such as smart home applications (Ur et al., 2014; De Russis and Corno, 2015),
cross-device interactions (Ghiani et al., 2015), the Internet of Things (Tuomisto et al., 2014).

IFTTT only allows rules to be composed of a single trigger and a single action. Several frameworks
were proposed to support multiple triggers (IFs) and actions (THENs). Dey et al. created an interface
that users can drag and drop multiple sensors and effectors on a sheet to create new rules (Dey et al.,
2006). Huang et al. (Huang and Cakmak, 2015) and Ur et al. (Ur et al., 2014) both extended IFTTT’s
interface to allow users select more than one triggers or actions. However, most of these works
focused on the challenges in designing interfaces or workflows for creating a rule and examined their
solutions with participants using full-size monitors and keyboards, such as via Amazon Mechanical
Turk. Only few works focused on issues raised by mobile devices when creating complex rules.
Häkkilä et al. created a trigger-action programming system, Context Studio, on the Series 60 Nokia
mobile phone back in 2005 (Häkkilä et al., 2005). While the mobile devices and sensors used in
Context Studio were outdated, this project provided some early insights of challenges we face today.
On the other hand, competitors of IFTTT, such as Tasker, Llama, AutomateIt, On{X}, Atooma, and
Microsoft’s Flow all aimed to support multiple IFs and THENs in their product. However, none of
these have achieved the same success as IFTTT.

Limitations of user programming were also studied. Daniel et al. (Daniel et al., 2012) pointed out
that mashups platforms aimed at non-programmers are either powerful but too hard to use, or easy
but too simple to be practical. Huang et al. (Huang and Cakmak, 2015) studied the mental model of
IFTTT users and found that users do not always correctly understand how a sensor/effector works,
which causes errors in user-created rules. Recent work has been proposed which uses crowdsourcing
to build software (LaToza and van der Hoek, 2016).

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 117

2.2. Crowd-powered Conversational Agents

Personal intelligent agents are now available on most smartphones, i.e., Google Now on Android, Siri
on iOS, Cortana on Windows phones. Google Now is known for spontaneously understanding and
predicting user’s life pattern (e.g., flight schedules, or “time to go home”), and automatically pushing
notifications. Such agents can understand a number of speech commands to help users more easily
access functionality. However, most of these virtual personal assistant are limited in their ability
to understand their users. Google Now only reacts to certain fixed set of events, and users have no
manner to extend its capability based on their own needs; Siri and Echo can perform speech queries,
but are not able to understand complex verbal instructions to perform actions on the user’s behalf.
Although Echo allows to execute scripted actions via third-party services such as IFTTT1, it requires
users to manually program these behaviors in advance. On the other hand, InstructableCrowd gives
users the direct control to define intelligent behaviors their smartphones should perform, and uses the
crowd to create these behaviors with conversational interaction.

In response to this situation, crowd-powered intelligent agents were proposed. Chorus is a crowd-
powered assistant that can hold intelligent conversations (Lasecki et al., 2013b) and has been deployed
to public (Huang et al., 2016). Users speak to it, and it responds back quickly. Chorus is powered by
a dynamic group of crowd workers (recruited on-demand) who propose responses and vote the best
ones through. An incentive mechanism encourages workers to contribute useful responses. Potential
downsides of crowdsourcing are cost and latency (Lasecki et al., 2013a). Guardian automates parts
of Chorus by having the crowd transition existing Web APIs (Application Programming Interfaces)
to dialog systems (Huang et al., 2015); and Evorus creates a framework that automates Chorus over
time (Huang et al., 2018).

One limitation of these systems is that either Chorus or Guardian can only say something to the
user, but not do something based on the conversation. InstructableCrowd pushes the boundaries of
crowd-powered conversational systems by allowing users to perform actions beyond information
inquiry. For instance, while users can discuss with Chorus to figure a good price of a flight ticket or
verbally ask Guardian to query Travel APIs, users can not via a conversation configure a notification
alert that monitors the dynamics of the ticket price with either systems. Enabling users to create
a piece of computer-executable program via conversations opens up the opportunities of verbally
“instructing” devices to customize their behaviors. The fact that today’s voice-enabled devices such
as Amazon’s Echo allows users to set up IF-THEN rules (e.g., IFTTT) via mobile apps manually
suggests the real users’ needs of customizing their devices. InstructableCrowd explores performing
these customization using conversational interface. A similar effort that pushes the paradigm of
personal assistant toward using conversations to set up or trigger applications can also be found in
recent industrial products such as Google Assistant.

Alternatively, conversational assistants powered by trained human operators such as Magic2, Fancy
Hands3 and Facebook M have also appeared in recent years.

1Users can apply IFTTT on Amazon’s Alexa manually: https://ifttt.com/amazon_alexa
2Magic: https://getmagic.com/
3Fancy Hands: https://www.fancyhands.com/

118 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

2.3. Automatic IF-THEN Rules Generation

Automatically translating a natural-language utterance into the form that computers can execute is
a well-known task in natural language processing, which is referred to as language understanding
or semantic parsing. For instance, Artzi et al. used a grounded CCG (Combinatory Categorial
Grammar) semantic parsing approach to map instructions such as “at the corner turn left to face the
blue hall” to actions that the agent (virtual robot) can execute (Artzi and Zettlemoyer, 2013); and
NaturalJava aimed to use a natural language interface for creating, modifying, and examining Java
programs (Price et al., 2000).

Particularly for IFTTT rules, Quirk et al. collected 114,408 IF-THEN rules and their natural-language
descriptions from the IFTTT website, and demonstrated the possibility of producing IF-THEN rules
based on corresponding descriptive text (Quirk et al., 2015). Several follow-up work that proposed
different approaches such as attention-enhanced encoder-decoder model (Dong and Lapata, 2016),
using latent attention (Liu et al., 2016), or syntactic neural model (Yin and Neubig, 2017) further
improved the accuracy of IFTTT rule generation. Under the context of conversational assistance,
Chaurasia et al. created an automated dialog system that generates IFTTT rules by having a
conversation with users (Chaurasia and Mooney, 2017). With a Free User-Initiative setting (“a more
realistic setting”), Chaurasia’s system achieved an accuracy of 81.45% in generating IFTTT rules.
However, this performance is still not sufficient for practical use, and none of prior work attempted
to produce multi-part rules that are more complex than that of IFTTT.

3. INSTRUCTABLE-CROWD

InstructableCrowd is implemented as an Android mobile application (Figure 3) for supporting end-
users to converse with crowd workers and describe problems they encounter, such as “I was late for
a meeting this morning, and I don’t want that to happen again.” The crowd workers can talk with the
user and use an interface to select sensors (IFs) and effectors (THENs) to create an If-Then rule
in response to the user’s problem. The rules are then sent back to the user’s phone. For instance, if
the user mentions having trouble with early morning meetings, the crowd can create the rule “send a
notification the night before a meeting” for the user. Furthermore, InstructableCrowd is also able to
merge multiple rules sent by different crowd workers to form a more reliable final rule. We describe
the system architecture and implementation details in this section.

3.1. Rules, Sensors, and Effectors

In this work, a Rule is defined as a tuple that contains an IF part and a THEN part. The IF part
contains a set of Sensors (also referred to as IFs) that describe aspects of the user’s life and context.
For instance, the “Calendar” application describes the status of all calendar events of the user, and
the “Phone Body” sensor describes the physical motions of the smart phone (e.g., phone is moving).
Both can be Sensors in the IF part. The THEN part contains a set of Effectors (also referred to as
THENs) that can be performed, such as push a notification, set an alarm, and send a text message,
etc. It is noteworthy that InstructableCrowd allows more than one Sensors/Effectors in each part,
while IFTTT only allows one. An overview of an example rule is shown in Figure 2.

Each Sensor has one or more Triggers that can be selected. For instance, the “calendar” sensor could
have three different Triggers that reflect the status of 1) currently ongoing events, 2) future events

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 119

Sensor Trigger Trigger Description Attributes (Input Type)

Bus Current location
The bus is currently at
a certain stop:

Bus Number (Text)
Bus Stop (Text)

Future location
The bus will arrive at
a certain stop in minutes:

Bus Number (Text)
Will Arrive at Stop (Text)
In How Many Minutes (Text)

Calendar
Current event

If I am having an event
right now that: Event Type (Select)

Future event
(absolute time)

If I will have an event that
(absolute time):

Day (Select)
Start Time (Time)
End Time (Time)
Event Type (Select)

Future event
(relative time)

If I will have an event that
(relative time):

In How Many Minutes (Text)
Event Type (Select)

Call Receive a call If I receive a phone call that: From (Text)

Clock Current time The current time is:
At/Before/After (Select)
Time (Time)

Email Receive an email If I receive an email that: Sent By (Text)

GPS Current location I am currently located at: Location Name (Text)

Distance to
a location

If my distance to a
certain location that:

To (Text)
Is Greater/Less Than/Equals To (Select)
Distance (Text)

Message Receive a message If I receive a text message that:
Sent By (Text)
Contains the word(s) (Text)

News Receive a news If I receive a breaking news that: Title contains the word(s) (Text)

Phone
Body

Phone falls If my phone is falling. N/A

Drive If I am driving. N/A

Weather Weather forecast If the weather forecast that:
Day (Select)
Forecast (Select)

Table 1. Sensors (IFs) with their Triggers and Attributes as implemented in InstructableCrowd.

120 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

Effector Action Action Description Attributes (Input Type)

Alarm Set an alarm Set an Alarm that:
Day (Select)
Time (Time)

Calendar Add an event Add an Event on my Calendar that:

Day (Select)
Start Time (Time)
End Time (Time)
Event Type (Text)
Event Title (Text)

Call Dial a call Call:
To (Text)
What to Say (Text)

Email Send an email Send Email(s) that:
To (Text)
Email Title (Text)
Email Content (Text)

Message Send a message Send Message(s) that:
To (Text)
Message Content (Text)

Notification Send a notification Push me a Notification that: Notification Content (Text)

Table 2. Effectors (THENs) with their Actions and Attributes implemented in
InstructableCrowd.

Rule = IF + THEN

IF

- I have a meeting at {9am} {tomorrow} .

THEN

- Set an alarm at {7am} {tomorrow}.

- Call me at {7am} {tomorrow}.

All conditions are fulfilled.IF () Do All actions.THEN ()

Figure 2. Example of a rule in InstructableCrowd. A Rule is defined as a tuple that contains an
IF part and a THEN part. The IF part contains a set of Sensors that describe aspects of the
user’s life and context, and the THEN part contains a set of Effectors that can be performed.

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 121

Figure 3. InstructableCrowd users have a conversation with crowd workers about a problem
they are having. Crowd workers collectively create IF-THEN rules that may help the end user

solve their problem using sensors and effectors available on the smartphone platform. The rules
are then sent back to the user’s phone for review, editing, and approval. The rules then run on

the smartphone.

at an absolute time (e.g., 9am today), or 3) future events at a relative time (e.g., in 30 minutes.)
Similarly, one Effector can also have one or more Actions to perform. Each Trigger and Action is
composed of a set of Attributes to specify the details of the condition. For instance, for configuring
“Calendar” sensor to tell if the user has any events in 30 minutes with the “Future Event (Relative
Time)” Trigger, the “In How Many Minutes” attribute needs to be filled with “30,” and the “Event
Type” attribute needs to be filled with “Any.” In this paper, we focused on observing end-user and
workers behavior in selecting Sensors/Effectors and filling Attributes.

The full list of Sensor and Effectors with their Triggers/Actions and Attributes used in our study are
listed in Table 1 and Table 2.

122 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

3.2. Conversational Agent for the End-user

InstructableCrowd is implemented as a conversational agent for Android smartphones. By calling
the personal agent’s name or clicking on the red button (as shown in Figure 3), the user is able to
give the agent commands via voice or text. The client side records the user’s speech and sends it to
the server, which in turn sends this speech on to Google Automatic Speech Recognition; the user
can also use text entry to input the command. InstructableCrowd adopts the LIA framework (Azaria
et al., 2016), which uses a combinatory categorial grammar (CCG) parser to parse the input text into
a logical form and execute the corresponding commands, to recognize user’s voice input. Once the
user give verbal commands such as “create a rule,” LIA connects to InstructableCrowd and initiates
the rule creation process.

At the beginning of each conversation, InstructableCrowd posts 10 Human Intelligence Tasks (HITs)
to Amazon Mechanical Turk to recruit a group of crowd workers. Each worker will be directed to a
web-based interface (Figure 4), where they can view the user’s messages, respond to the user, and
compose an IF-THEN rule based on the user’s request. The user and workers communicate with
each other synchronously via a web server (Figure 3). A similar system framework has been used by
several real-time crowd-powered conversational agents, such as Chorus (Huang et al., 2016; Lasecki
et al., 2013b) and Evorus (Huang et al., 2018).

The user may then describe his problems and converse with the crowd to figure out which rules to
create (the workers converse by text, and the user, may either use text or voice). Once the rule is
created, it is sent back to the user’s phone, where a Decision Rule Engine component (Tomazini et al.,
2017; Romero and Akoju, 2018) will store, validate and process that rule. Currently, the system is
implemented and tested on the Android OS 6.0.1 and the server is implemented in Java.

3.3. Rule Editor for the End-user

InstructableCrowd also provides an editing interface for the user to manually create new rules, edit
them and edit rules received from crowd workers. As shown in Figure 3, the user is able to navigate
all received rules and click on each rule for additional details. All rules are grouped together by the
conversational session in which the rule was created. Crowd-generated rules are blue, and the rules
created or edited by the user are green. In order to ease on the comprehension of these rules, we
created a template-based natural language description for each Trigger. For instance, the description
template of “Weather” sensor’s forecast Trigger is “It will

[
weather

] [
day
]
.” If “Weather” sensor’s

this trigger is selected, along with the “Day” attribute filled with “Tomorrow” and the “Forecast”
attribute filled with “Snow”, the displayed description will be “It will Snow Tomorrow.” On the
editing interface, the description will be generated automatically in real-time and enable the user to
quickly check the rule they just created or edited. The user can also use this rule editor to manually
create an IF-THEN rule from scratch on their phone without talking to the crowd. In our user study,
participants use various approaches to create IF-THEN rules with InstructableCrowd. Our end-user
editing interface is inspired by the IFTTT mobile APP. However, it enables the user to combine
multiple IFs and THENs while IFTTT focuses on one-to-one APP compositions.

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 123

Figure 4. Worker interface. A chat interface (A) allows workers to talk to the end user to discuss
the problem. The IF section (B) allows the worker to specify Sensors, along with Triggers (in red

text) and their Attributes; the THEN section (C) allows them to specify Effectors, along with
Actions (in red text) and their Attributes.

3.4. Worker Interface

The worker interface allows crowd workers to select Sensors (IFs) and Effectors (THENs) easily.
The interface contains three main parts (Figure 4). 1) The web-based chat interface allows workers
to discuss the problem with the end-user in real-time. 2) The IF section contains a set of sensors on
the user’s phone that describe aspects of the user’s life and context. Workers first select appropriate
Sensors (e.g., Calendar) in the IF conditions, and then select Triggers under the Sensors (e.g., Future
Event (Relative Time)), and finally fill in appropriate attribute values (e.g., In How Many Minutes =
30.) 3) The THEN section allows workers to select Effectors and corresponding Actions, and fill in
attribute values. By selecting IFs and THENs, the worker is able to create rules that trigger certain
actions based on specific conditions.

124 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

3.5. Merge Multiple Crowd-Created Rules by Voting

InstructableCrowd recruits multiple workers for each conversation; therefore, multiple rules are
received respectively from each conversation. End users are free to pick any rules submitted by the
crowd, or wait until the rules merged automatically into a final rule. Our automated rule-merging
process uses output agreement to identify the best components to use. First, any Sensors and Effectors
that are selected by more than 2 workers (our current threshold) are included in the final rule. Second,
for each Sensor/Effector picked in the first step, its Trigger/Action that is selected by most workers
will be chosen. Finally, for each selected Trigger/Action, InstructableCrowd fills each attribute with
the value that was proposed by the most workers. If two values were proposed by an identical number
of workers, InstructableCrowd selects the value which was proposed earliest. Output-agreement
mechanisms such as ESP Game for collecting image labels (Von Ahn and Dabbish, 2004) have been
widely used to obtain reliable human-generated labels from multiple workers (von Ahn and Dabbish,
2008). Its variation, input-agreement, has also been introduced (Law and von Ahn, 2009).

3.6. Modular Sensors (IF) & Effectors (THEN)

We designed a general JSON (JavaScript Object Notation) schema to represent each sensor and
effector. The rules created by the crowd are represented as a combination of sensors and effectors in
this JSON format. New sensors and effectors can thus be added easily. For example, the following
is the Weather sensor’s JSON file representing that “it will snow tomorrow” (Trigger = Weather
forecast).

1 {
2 "name": "if-weather",
3 "condition": "if-weather-forecast",
4 "attributes": [
5 {
6 "name": "if-weather-forecast-day",
7 "value": "Tomorrow",
8 "type": "select"
9 },

10 {
11 "name": "if-weather-forecast-condition",
12 "value": "Snow",
13 "type": "select"
14 }
15]
16 }

The following is the JSON representation of the Alarm effector for “set the alarm at 7am tomorrow”
(Action = Set an alarm.)

1 {
2 "name": "then-alarm",

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 125

3 "condition": "then-alarm-send",
4 "attributes": [
5 {
6 "name": "then-alarm-send-day",
7 "value": "tomorrow",
8 "type": "text"
9 },

10 {
11 "name": "then-alarm-send-time",
12 "value": "07:00",
13 "type": "text"
14 }
15]
16 }

The following is the JSON representation for an IF-THEN rule “IF it will snow and I have a meeting
at 9am tomorrow, THEN set alarm at 7am,” which includes 2 sensors (Weather and Calendar) and 1
effector (Alarm.)

1 {
2 "if": [
3 {
4 "name": "if-weather",
5 "condition": "if-weather-forecast",
6 "attributes": [
7 {
8 "name": "if-weather-forecast-day",
9 "value": "Tomorrow",

10 "type": "select"
11 },
12 {
13 "name": "if-weather-forecast-condition",
14 "value": "Snow",
15 "type": "select"
16 }
17]
18 },
19 {
20 "name": "if-calendar",
21 "condition": "if-calendar-future",
22 "attributes": [
23 {
24 "name": "if-calendar-future-day",
25 "value": "Tomorrow",

126 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

26 "type": "select"
27 },
28 {
29 "name": "if-calendar-future-type",
30 "value": "Meeting",
31 "type": "select"
32 },
33 {
34 "name": "if-calendar-future-start",
35 "value": "09:00",
36 "type": "time"
37 }
38]
39 }
40],
41 "then": [
42 {
43 "name": "then-alarm",
44 "condition": "then-alarm-send",
45 "attributes": [
46 {
47 "name": "then-alarm-send-day",
48 "value": "tomorrow",
49 "type": "text"
50 },
51 {
52 "name": "then-alarm-send-time",
53 "value": "07:00",
54 "type": "text"
55 }
56]
57 }
58]
59 }

New sensors and effectors can be added easily once they are implemented in our middleware, by
simply adding new JSON entries for them. Currently, we implemented 10 sensors and 6 effectors in
InstructableCrowd (Table 1 and Table 2.) As we go forward, we plan to continue expand the set of
available sensors/effectors.

3.7. Decision Rule Engine

The Decision Rule Engine is in charge of validating, storing, processing and executing rules created
by either a crowd-worker or the user. Decision Rule Engine is composed of multiple modules that
interact with each other in order to execute an action given a set of specific conditions that are true.

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 127

These modules are interconnected as shown in Figure 5. The following outlines the work flow (in
steps), message passing and how Decision Rule Engine components cooperate over time to manage
rules created by user or crowd-workers.

Figure 5. The architecture of InstructableCrowd’s Decision Rule Engine. The step (1) to step (9)
outlines the work flow, message passing and how Decision Rule Engine components cooperate

over time to manage rules created by user and crowd-workers.

– [Decision Rule Validator] After the user or crowd worker has defined a new rule to be added
(Step 1 in Figure 5), this component validates the syntax of that rule according to the sensors’ and
the effectors’ attributes and constraints (Step 2). For instance, if the rule has a condition that refers
to attribute <CALENDAR_START_TIME>, the validator will parse this condition and check that
in fact there exists a sensor called “Calendar” that has an attribute called startTime, which must be
of type Date and whose value must be a date/time that occurs later than current date/time.

– [Knowledge Base] Once the rule is parsed and validated, it is stored in a knowledge base where
can be accessed anytime by any component (Step 3). These rules are stored locally for performance
and privacy reasons, so potentially sensitive information contained within the rule is protected.

– [Rule Executor] After validation, the rule is immediately processed in order to determine whether
it should be executed in that moment (Step 4). If so, it invokes actions from the appropriate
effectors (Step 5). If not, it adds the rule to a queue so it can be executed later when all its
conditions are true. The Rule Executor periodically checks to see if each enqueued rule needs to
be executed (Step 6).

– [Monitoring & Tracking] This module is responsible for monitoring the rule execution process
(Step 7) by checking if there are rules that are either never triggered or conflicting with each other
(e.g., one rule intends to turn the GPS on while the other one intents to turn it off.) When conflicts
occur, the Monitoring/Tracking module temporarily subsumes the less relevant rule (i.e., the one

128 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

that has been activated less frequently) and then user is asked to confirm this subsumption decision
(Step 8).

– [Built-in & External Sensors/Effectors] In addition to built-in sensors and effectors that are part
of the operating system, such as GPS and SMS Messages, some virtual sensors/effectors are based
on external services, such as the Weather forecast and News feeds. In our implementation, we
use a RESTful API to upload, extract and collect information from web servers. Finally, user is
always aware of action execution through notifications, text messages, alarms, etc. (Step 9).

4. USER STUDY

For evaluating the performance of InstructableCrowd, we conducted a set of in-lab user study. Our
goal is to understand if creating IF-THEN rules using conversation would sacrifice rule quality,
compared with using a graphic user interface (GUI). Furthermore, we specifically recruited non-
programmers because one of the benefits of using InstructableCrowd is that complex rules can be
created without the need for a programming-like interface. Participants created rules using a mobile
application in a control condition to allow us to compare with how users currently create rules using
applications such as IFTTT.

4.1. Scenario Design

We designed the following 6 scenarios (S1 to S6) inspired by (Huang and Cakmak, 2015), along with
a gold-standard set of sensors and effectors for each that we consider to be ground truth for assessing
the performance.4 We further categorized scenarios into three difficulty levels based on the numbers
of sensors and effectors the scenario requires. S1 and S2 are easy scenarios (1 sensor and 1 effector),
S3, S4, and S5 are intermediate scenarios (2 sensors and 1 effector), and S6 is hard scenario (2
sensors and 2 effectors).

i. [S1] Sports: I am very interested in the performance of the “Steelers” and would like to get
an immediate notification if there is a news article mentioning them. (Easy scenario.)

– IF: News (Receive a news: Title contains the word(s) = “Steelers”)
– THEN: Notification (Send a notification: Notification Content = “News of Steelers!”)

ii. [S2] Message: My mother likes to send me text messages. I work in a restaurant so I cannot
reply to her messages very often at work. However, my grandfather was hospitalized last week
and my mother is taking care of him now. I do not want to miss any important message about
my grandpa. (Easy scenario.)

– IF: Message (Receive a message: Sent By = Mom, Contains the word(s) = “grandfather”)
– THEN: Notification (Send a notification: Notification Content = “Mom just texted you a

message about grandfather!”)

4 The attributes which were not specified in a gold-standard rule indicate that the user or worker should
leave these attributes blank. In the evaluation, the textual attributes such as message content or email content
will be examined manually. It is also noteworthy that in this section we only listed one common gold-standard
rule, while more than one rule (e.g., adding or alternating notifications) could be considered valid for a scenario.
We describe the details of evaluation in Section 5.

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 129

iii. [S3] Snow & Meeting: It snowed last night. I was late for work this morning and missed
an important meeting at 9am because I had to take care of all the snow. My boss was quite
upset and warned me this can not happen again. (Intermediate scenario.)

– IF: Weather (Weather forecast: Day = today, Forecast = snow) + Calendar (Future event
[absolute time]: Day = tomorrow, Event Type = meeting, Start Time = 09:00)

– THEN: Alarm (Set an alarm: Day = tomorrow, Time = 07:00)

iv. [S4] Drive & Call: I just heard that a large percentage of car accidents are caused by talking
on the phone while driving. I decided I am not going to answer any phone calls while driving.
Therefore, when I am driving, if anyone calls me, I would like to automatically reply to him/her
with a message saying “Sorry I’m driving.” (Intermediate scenario.)

– IF: Phone Body (Drive) + Call (Receive a call: From = Anyone)
– THEN: Message (Send a message: To = People mentioned in “IF(s)”, Message Content

= “Sorry, I am driving.”)

v. [S5] Bus: I usually leave work after 5pm and take Bus “53” home at the “Washington St.”
stop. However, the “53” buses are not common. I prefer not to wait at the bus stop unless the
bus is coming soon. It takes me about 5 minutes to walk from my office to the “Washington
St.” stop, and it also takes about 5 minutes for Bus “53” to drive from the “Hamilton St.” stop
to the “Washington St.” stop. (Intermediate scenario.)

– IF: Bus (Current location: Bus Number = 53, Bus Stop = “Washington St”) + Clock
(Current time: At/After/Before = After, Time = 17:00)

– THEN: Notification (Send a notification: Notification Content = “Bus 53 will be arriving
at Washington St. stop soon!”)

vi. [S6] Late for Dinner: My wife Amy does not like me to be late home when we have a
big scheduled dinner. So, if I am going to have a big dinner at home in 30 minutes, but I am
still far away – say, 30 miles – from home, please send Amy a message saying “I might be
home late”. Also, give a phone call to “Ben’s Flower Shop” and tell them to “Prepare a small
surprise bouquet.” (Hard scenario.)

– IF: GPS (Distance to a location: Is Greater/Less Than/Equals To = Is Greater Than, To
= Home, Distance = 30) + Calendar (Future event [relative time]: Event Type = Dinning,
In How Many Minutes = 30)

– THEN: Message (Send a message: To = Amy, Message Content = “I might be home
late.”) + Call (Dial a call: To = Ben Flower Shop, What to Say = “Prepare a small
surprise bouquet for me.”)

In our post-study survey, we asked participants to rate how realistic these scenarios are, in the scale
of 1 (very unrealistic) to 7 (very realistic). The mean rating among the twelve participants was 6.25
(SD=0.62).

130 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

Figure 6. User study setting. While waiting for responses from the crowd, participants used their
own laptops or mobile devices to simulate the likely context of use in the real world.

4.2. User Study Setup

We conducted a lab-based user study in which we asked participants to create an IF-THEN rule for
each scenario using one of the following conditions:

i. [Condition 1] InstructableCrowd: The participant first talks to the crowd via Instructable-
Crowd (using text or voice, depends on the participant’s preference) and waits to receive rules
submitted from the crowd workers. The participant then selects a rule that they prefer and
manually edits it to create the final rule. Each conversation was shown to 10 workers, and each
worker creates an IF-THEN rule based on the conversation, respectively.

ii. [Condition 2] User: The participant uses the rule editor on the phone (as shown in Figure 6)
to manually create a rule.

In condition (1), three data points were recorded: the crowd-created rule that was picked by the
participant (which we refer to as Crowd Only), the rule edited by the participant (Crowd + User),
and the rule that was created by merging all ten crowd-created rules (Crowd Voting) using the
process described in Section 3.5 (threshold for including a sensor/effector was 2.) We refer to
condition (2) as User Only.

For recruiting participants, we posted the information on social media sites such as Facebook and
Twitter. We also posted flyers on the campus of Carnegie Mellon University (Pittsburgh campus)
and University of Pittsburgh. The goal of this project is to enable users to compose applications
for their own usage, especially for the users who do not know how to program. Therefore, we
recruited participants which had very limited experience in programming or none at all. People who
volunteered to participate our study were directed a Web form for signing up, in which we asked

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 131

people to self-report their programming skill level (“How good are you at programming?”), from
1 (“I don’t know anything about programming.”) to 7 (“I’m an expert programmer.”). We selected
the earliest 14 participants who signed up with a self-reported programming skill level of 1 or 2.
The first 2 participants were recruited for the pilot study, in which we tested and refined our study
protocol and the system, and the remaining 12 participants were recruited for the formal user study.
All the results reported in this paper were based on the formal user study with these 12 participants,
who were aged from 26 to 36 years (mean = 29.42, SD = 3.48); 8 are female and 4 are male; and
11 participants rated their own programming skill level as 1 (out of 7), and only one participant
self-rated as 2 (out of 7). It is noteworthy that the goal of this project is to examine the feasibility of
using a natural language interface to create IF-THEN rules. While our participants were of a younger
population, we believe that a user study with twelve participants is sufficient to show the idea of
InstructableCrowd works, and that InstructableCrowd can be helpful to some users.

In our user study, we scheduled a one-hour time slot with each participant and brought them in the lab,
respectively. Each participant was requested to create an IF-THEN rule which would resolve each of
the 6 scenarios. The participants were asked to solve three scenarios via InstructableCrowd (condition
1), and three other scenarios via the rule editor (condition 2). The scenarios were controlled for the
condition they were associated with. That is, each scenario was given to 6 subjects as condition 1 and
to 6 other subjects as condition 2. In addition, the scenarios were controlled for the order in which
they appeared, that is, each scenario was given in each possible order (first, second, third, fourth,
fifth and last) exactly once for each condition. This was done in order to reduce the learning-effect.
Participants were instructed to follow the scenarios as close as possible, but were allowed to propose
minor changes during the conversation, e.g., change “send me notification” to “send me an email.”
Participants were also free to use their own laptop or mobile devices when they waited for the
response from the crowd (as shown in Figure 6,) because we believe this setting is more realistic for
users who try to converse via instant messaging on mobile devices. A post-study questionnaire was
used to collect subjective feedback from the participants. The compensation for each participant was
$20.

For each conversational session, InstructableCrowd posted a HIT (Human Intelligence Task) with
10 assignments to MTurk. The price of each assignment was $0.50 USD. During a conversational
session, multiple workers could communicate with the participant via their interface and submit rules
respectively. 156 unique workers on MTurk participated in our experiments. All sessions, chats, and
rules were recorded in a database with timestamps. We also timed how long the participant took to
create each rule by using the rule editor.

As listed in Table 1 and Table 2, in the user study crowd workers and end-users had 10 sensors to
choose from: Email, Bus, Message, GPS, Weather, Call, Clock, Calender, News, and Phone Body
(for driving and phone falling); and 6 effectors: Message, Email, Alarm, Call, Notification, and
Calendar (for adding an event).

5. RULE QUALITY EVALUATION

In this section we evaluated the quality of resulting rules in each setting. In order to assess the
quality of a composed IF-THEN rule, we focused on two subtasks: sensor/effector selection and
attribute filling. Composing an IF-THEN rule contains three sub-tasks: sensor/effector selection,
trigger/action selection, and attribute filling. For instance, to effectively know that you have an early

132 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

meeting tomorrow, the “Calendar” sensor firstly needs to be selected, and then its “Future Event
(Absolute Time)” trigger needs to be selected, and finally the “Start Time” attribute needs to be filled
with “Before 8am.” Since each sensor used in our study on average only has 1.5 triggers (SD=0.71)
and each effector only has 1 action, we did not evaluate the performance of trigger/action selection
separately, but merge it as a part of attribute filling. Namely, in the case that the triggers/actions
selected by users or the crowd were incorrect, we noted the accuracy of attribute filling as zero in
this sensor/effector.

In this section, we describe the evaluation results of InstructableCrowd and demonstrate that the
system is able to produce high-quality IF-THEN rules via conversation.

5.1. Evaluation of Sensor/Effector Selection

The evaluation process was as follows: First, we expanded the set of our original gold-standard rules
to include participant-created rules which were useful, but not exactly what we anticipated. For
instance, in S3, some participants decided to send emails to the boss at work instead of setting up
an earlier alarm; in S2, one participant decided to reply to his/her mom with a message instead of
setting a push notification. We went through all the submitted rules and added the effective solutions
that we did not think of initially. Second, we allowed extra or alternative effectors if appropriate. For
instance, some participants thought that setting a push a notification is not enough and decided to
send an email or to set an alarm. We considered these alternative rules are also effective. Finally, a
piece of software was created to perform an automated evaluation on all recorded rules.

Selecting a set of correct sensors/effectors from a pool of candidate is a retrieval task. We therefore
use precision, recall, and F1-score to evaluation this sub-task. These values are calculated as follows.

Precision =
|{Selected Sensors}∩ {Gold-Standard Sensors}|

|{Selected Sensors}|

Recall =
|{Selected Sensors}∩ {Gold-Standard Sensors}|

|{Gold-Standard Sensors}|

F1-score =
2×Precision×Recall

Precision+Recall

When a rule is partially correct, we selected the gold-standard rule which results in the highest
F1-score to report the numbers in this paper. The overall evaluation results are shown in Table 3.
Both “Crowd+User” and “Crowd Voting” settings achieved comparable performances to that of
the “Crowd Only” setting is both IF and THEN parts. Selecting correct sensors in IF is harder than
selecting correct effectors in THEN, which is expected due to the tolerant nature of our evaluation
setup for THEN. We observe that “Crowd Voting” resulted in a higher average recall, which suggested
that a group of crowd workers is, collectively, less likely to forget picking some sensors than an
individual user. We also notice that participants actually corrected errors in the crowd-created rules,
as both the average precisions and recalls are higher in “Crowd+User” than “Crowd Only”. For
instance, in the “Late for Dinner” scenario (S6), one common mistake was that crowd selected only
one of Calender or GPS sensors, instead of both. Two different participants fixed this error by adding
back the missing sensor. Another similar example occurred in the “Bus” scenario (S5), where the

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 133

0

0.2

0.4

0.6

0.8

1

Easy Intermediate Hard

Crowd Only

Crowd + User

Crowd Voting

User Only

0

0.2

0.4

0.6

0.8

1

Easy Intermediate Hard

0

0.2

0.4

0.6

0.8

1

Easy Intermediate Hard

Crowd Only Crowd + User Crowd Voting User Only

IF THEN

Figure 7. Average F1-score of sensor/effector selection in easy, intermediate, hard scenarios.
“Crowd Voting” performed similarly or slightly better than “User Only” in easy and intermediate

rules, but worse in hard rules.

crowd sometimes missed the “Clock” sensor which can indicate the current time is after 5pm. One
participant fixed this by adding the Clock sensor back to the IF.

IF THEN Avg

Precision Recall F1 score Precision Recall F1 score F1 score
User Only 0.94 0.85 0.89 0.98 0.99 0.98 0.94
Crowd Only 0.94 0.77 0.85 0.97 0.90 0.94 0.89
Crowd+User 0.94 0.83 0.89 1.00 0.94 0.97 0.93
Crowd Voting 0.92 0.89 0.91 0.95 0.96 0.96 0.93

Table 3. Sensor/Effector selection overall performance. Both “Crowd+User” and “Crowd
Voting” settings achieved comparable performances to that of the “Crowd Only” setting is both

IF and THEN parts.

We also evaluated the performance based on the scenarios’ difficulty level. The dynamics of F1-scores
are shown in Figure 7. While the THEN parts were not influenced much, the F1-scores in IF parts’
decreased as the scenarios got more complex. “Crowd Voting” performed similarly or slightly better
than “User Only” in easy and intermediate rules, but worse in hard rules. These results also indicate
the number of sensors and effectors influences the difficulty level of composing the rule, while other
factors such as abstraction level and type of sensors/effectors also reportedly play important roles (Ur
et al., 2014).

134 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

IF THEN Avg

User Only 98.3% 95.0% 96.7%
Crowd Only 81.4% 90.0% 85.7%
Crowd + User 89.2% 93.3% 91.3%
Crowd Voting 86.4% 95.0% 90.7%

Table 4. Attribute filling overall performance. While the “Crowd Voting” setting achieved the
same average accuracy as that of the “User Only” in the THEN part, its average accuracy is

lower than “User Only” in the IF part.

5.2. Evaluation of Attribute Filling

The evaluation process of attribute filling is similar to that of sensor/effector selection. Any value
for an attribute which seemed appropriate was considered to be correct. For instance, the content of
the sent messages or emails could vary, and we manually labeled the effectiveness of each “content”
attribute in effectors; the “Day” attribute (Table 1) in the Weather sensor of S3 could be set to either
“Today” or “Tomorrow”, however, it would only be judged as correct if the Alarm’s “Day” attribute
(Table 2) was set to the same value. Software was created to evaluate these attributes automatically.

For a given sensor/effector S that is correctly selected, we calculate the accuracy of its attribute
values as follows.

Accuracy =
Number of Attributes in S with correct values

Number of Attributes in S

If trigger/action of S is incorrect, Accuracy = 0.

The overall evaluation results of attribute filling are shown in Table 4. While the “Crowd Voting”
setting achieved the same average accuracy as that of the “User Only” in the THEN part, its average
accuracy is lower than “User Only” in the IF part. To understand the sources of this performance gap,
we analyzed the average accuracy of attributes in each sensor/effector of each scenario, as shown in
Figure 8. We observed the sensors (IF) where “Crowd Voting” resulted in a lower accuracy than that
of “User Only” (i.e., the Message sensor in S2, the Bus sensor in S5, and the Calendar sensor in S6)
and identified two sources of crowd workers’ errors: communication gap and misunderstanding
the meanings of triggers. One source of the errors was the communication gap between the end-user
and crowd workers. Namely, the user falsely expressed or missed some information when talking
to the crowd. For instance, in S2, one participant falsely said “dad” often sent him/her messages
(instead of “mom”), and the crowd therefore filled “dad” in the “Sent By” attribute; in S5, one
participant did not mention to the crowd that it usually takes 5 minutes to walk to the bus stop, so the
crowd arbitrarily filled the “In How Many Minutes” attribute of Bus sensor with 2 minutes (trigger =
“Future location”). Another source of the errors is the misunderstanding the meanings of triggers.
In S6, we found that some crowd workers confused the “Future Event (absolute time)” trigger with
“Future Event (relative time)” trigger of the Calendar sensor. In addition, both users and crowd
workers have typos in their attributes. For instance, a worker misspelled “Steelers” as “Stelers” in

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 135

0

0.2

0.4

0.6

0.8

1

if-message then-notification

6

Crowd Only

Crowd + User

Crowd Voting

User Only0
0.2
0.4
0.6
0.8

1

if-news then-notification

4Sports (S1)

0
0.2
0.4
0.6
0.8

1

if-message then-notification

6

Message (S2)

0
0.2
0.4
0.6
0.8

1

if-weather if-calender then-alarm

1
Snow & Meeting (S3)

0
0.2
0.4
0.6
0.8

1

if-phone-body if-call then-message

2Drive & Call (S4)

0
0.2
0.4
0.6
0.8

1

if-bus if-clock then-notification

3Bus (S5)

0
0.2
0.4
0.6
0.8

1

if-calender if-gps then-message then-call

5Late for Dinner (S6)

Figure 8. Average accuracy of attribute filling of correctly-selected sensors/effectors. “Crowd
Voting” performed similarly as “User Only” in most cases. We analyzed S2, S5, and S6 and
found that crowd errors are mainly caused by communication gap and misunderstanding of

attributes.

S1, and another worker entered “19:00” as the “start time of the meeting” in S3, while the expected
answer is “07:00.”

6. USER ACTIVE TIME

We also analyzed the user active time, i.e., the time that users spent on interacting with the system.
Even though it is expected that InstructableCrowd requires more time since the user needs to talk
with the crowd, it is still important to understand how much time it takes a user to create a rule. In
our study, participants spent an average of 2 minutes and 45 seconds (SD=1:23) to create a rule from
scratch using the rule editor (“User Only”). When using InstructableCrowd, participants spent an
average of 3 minutes 45 seconds (SD=2:01) to converse with the crowd, and then the system took
about one minute after the conversation to create a rule that the participants were willing to pick
(“Crowd Only”). If the participant decided to edit the crowd-created rules he/she just picked, it took
about 2 minutes for the participants to further edit the rule (“Crowd+User”). It took approximately
20 minutes for InstructableCrowd to receive the rules from all 10 workers and calculate the final rule
(“Crowd Voting”). The complete timeline is shown in Figure 9. To put these numbers in context,
a study focusing on instant messaging within small groups showed that, on average (Least-Square
Means), students respond to an instant message in 32 seconds, and people in startups respond in 105
seconds (Avrahami et al., 2008).

136 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Crowd+User

User Only

3:45 14:44 21:25 25:13

User Only

05010015020025030035040045050055060065070075080085090095010001050110011501200125013001350140014501500

Crowd+User 05010015020025030035040045050055060065070075080085090095010001050110011501200125013001350140014501500

Crowd+User

4:53

7:09

User Only

Crowd (+User)

Crowd Voting
0:00

2:45

Conversation Time User Editing Time

6th Crowd

Rule

8th Crowd

Rule

10th Crowd

Rule

Crowd Voting

Figure 9. The complete timeline of InstructableCrowd. With the cost of a slightly longer user
active time, InstructableCrowd is able to generate rules with comparable quality user-created

rules. Furthermore, in our post-study survey (Section 7.1) the participants who preferred using
InstructableCrowd over rule editor claimed that InstructableCrowd is “faster” or “quick”, while

their user active time of using InstructableCrowd is actually longer.

On average, the “Crowd Voting” setting took a user one more minute than that of the “User Only”
setting. That is to say, with the cost of a slightly longer user active time, InstructableCrowd opens
up a hand-free manner of creating IF-THEN rule via conversations with the crowd. We believe this
is reasonable because an advantage of a speech interface is that it can be hands-free and so users
can intersperse other activities while conversing to create their rules. According to our technical
evaluation, the resulting rules from InstructableCrowd is as high-quality as user-created rules. It is
also noteworthy that user’s cognitive load when editing a rule manually and when talking with a
conversational partner are very different. When having a conversation with InstructableCrowd, users
are free to browse the Internet, chat with other people, or even watch a video at the same time. In
our post-study survey, which we will describe in Section 7.1, the participants who preferred using
InstructableCrowd over rule editor claimed that InstructableCrowd is “faster” or “quick”, while their
user active time of using InstructableCrowd is actually longer.

7. QUALITATIVE RESULTS

In addition to the technical evaluation, we also collected qualitative feedback about InstructableCrowd
from participants. This result suggests that InstructableCrowd provides an easier way to compose
applications for the users who have difficulty creating complex rules manually on their phones.

7.1. Feedback from Participants

We collected participants’ subjective feedback immediately after they finished the lab-based study.
We asked participants what method they preferred, i.e., InstructableCrowd (“Crowd+User”) or rule
editor (“User Only”), and grouped them into two groups according to their preference. The feedback
we received was that 4 participants preferred InstructableCrowd, 7 participants preferred the rule
editor, and 1 participant had no preference. We also asked participants to rate the difficulty of using
InstructableCrowd versus using the rule editor themselves, on a Likert scale, where 1 corresponds to
very easy, 2 to easy, 3 to slightly easy, 4 to neither easy nor hard, 5 to slightly hard, 6 to hard and
7 corresponds to very hard. As shown in Table 5, compared to the participants who preferred the
rule editor, the participants who preferred InstructableCrowd had a much higher difficulty rating for

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 137

using the rule editor. The correlation coefficient between a user’s “difficulty rating on the rule editor”
and “preferring InstructableCrowd” (prefer=1, not prefer=0) is 0.65, which is a strong correlation.
Namely, the users who had a hard time using the rule editor prefer to use InstructableCrowd. A
similar relation was not found between “user’s difficulty rating on InstructableCrowd” and “preferring
the rule editor” (correlation coefficient = 0.06). Table 5 also shows that the participants who preferred
InstructableCrowd also took longer than the other group to manually compose an IF-THEN rule on
average. This result suggests that InstructableCrowd provides an easier ways to create IF-THEN
rules for the users who have difficulty creating complex rules manually on mobile phones. The
one participant who had no preference between using the rule editor and using InstructableCrowd
gave the following feedback: “it depends on different situations. for example: i would like to create
rules through conversations with the system while driving.” Although we recruited users without
programming experience, they were somewhat tech-savvy; these results suggest we might see an
even stronger effect if InstructableCrowd was used by people even less comfortable with using their
smartphone.

We also asked why participants prefer InstructableCrowd. Interestingly, 3 out of these 4 participants
said that InstructableCrowd is “faster” or “quick”, while they actually spent longer time to create
a rule via InstructableCrowd when comparing to the time it took them when using the rule editor.
This could be because the difficult parts of creating rules is outsourced to the crowd when using
InstructableCrowd, and the participants do not need to develop a rule from scratch. Some participants
also stated that InstructableCrowd is more flexible since it allows the user to choose from a set of
rules which is sent from multiple crowd workers. One participant who chose to use speech input said
it is “faster” because he/she “doesn’t like to type.”

In the post-study questionnaire, we also asked participants when they would prefer to use Instructable-
Crowd, and when they would use the rule editor. In their responses we found that people tend to
create rules via conversation when 1) the rule would be too complex, and 2) they are busy or having a
tight schedule. 6 out of 12 participants said they would choose InstructableCrowd when the rule they
want to create has too many conditions or complex logic, e.g., “...I cannot figure out a proper logic to
state ‘If’ and ‘Then’, I may relay the conversation to ask help from a server.”; 3 out of 12 participants
said they would choose InstructableCrowd when they are busy, e.g., “I would use it when I am busy.”

7.2. Information Inquiry, Confirmation and Suggestions in Conversations

We analyzed the conversations between the participants and the crowd, and found that the responses
from the crowd were often requests for more information or explicit confirmations of user’s intent.
Both are known to be common dialogue acts of conversational agents (Walker and Passonneau,
2001).

Most of the conversations between users and the crowd is for collecting information. For instance, in
the following conversation of S3, crowd workers ask for the information that is required in order to
complete the rule they are creating:

crowd Hi, what can I help you with?
user it was snow last night and I was late for work and missed an important meeting this

morning.
crowd Would you like a weather alert?

138 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

Participants Grouped by Preference

Prefer InstructableCrowd Prefer Rule Editor

No. of participants 4 7

Avg. Difficulty Rating Crowd+User 3.25 (SD=1.50) 3.57 (SD=1.62)

User Only 4.25 (SD=1.71) 2.29 (SD=0.76)

Avg. Time to Create a Rule (User Only)
(mm:ss) 03:15 (SD=01:20) 02:30 (SD=0:45)

Table 5. The average difficulty ratings and rule composing time of participants that prefer
InstructableCrowd v.s. rule editor. Difficulty rating ranged from 1 (very easy) to 7 (very hard).
The participants who preferred InstructableCrowd had a higher difficulty rating for using the

rule editor, and also took longer to manually compose a rule.

crowd What would you like us to do?
user I missed an important meeting at 9am.

crowd What time do you usually wake up?
user 7am

crowd Would you like to wake up earlier if it snows? Is 1 extra hour enough?
user sure.

In the following conversation of S6, a crowd worker was trying to figure out the time of the dinner:

user if i have a big dinner on my calendar and i am going to be late (if i am still far away
in 30 minutes), send my wife a message saying :" i might be home late") and call the
florist to prepare a small bouquet.

crowd What time might this dinner start?
user it depends on my calendar.

In the following conversation of a different user for the same scenario S6, a different crowd worker
asked similar follow-up questions:

user I don’t want to be late for home too often, otherwise my wife would get angry at me
crowd So how may I help you
crowd when do you want to get an alert?

user can you send Amy a message saying I might be home late
user yes

crowd what time do you want this to be sent?
user if I’m going to be late

crowd what time is late?
user for our scheduled dinner on my calendar

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 139

Crowd workers sometimes confirmed with the users information which was conveyed previously. For
example, in the following conversation of S5, a worker asked a confirmation question about the time.

crowd hello?
user I leave work after 5pm and take Bus 53 home at the Washington street
user I don’t wanna wait for the bus for too long unless the bus is coming soon

crowd is after 5pm
user yes

Furthermore, open conversation can lead to solutions that the user did not think of. For example,
in the following conversation of S2, the crowd worker suggested to send a message back or to use
an alarm/notification, instead of setting a phone call. The alternatives that the crowd came up with
demonstrates their potential to be creative and think of solutions that the user might not have.

crowd Hello, how can I help you??
user please call me if the text from my mom containing “grandpa” or “grandfather”.

crowd Do you want to send them a message asking to call you, or do you want to
receive an alarm or notification?

user maybe just call me. thanks!

7.3. Alternative Solutions for the Same Scenario

We observed that participants and workers could come up with different rules in response to a same
scenario, for four main reasons: First, people have their own preferred ways to be notified under
different circumstances, and thus sometimes chose different effectors than we intended in their
rules. For instance, more than one participant tried to add extra effectors, such as an alarm in the
“Message” scenario (S2.) because they believed missing a message about the hospitalized grandfather
can be quite serious. Second, similarly, users also have their own preferences for sensors. For
example, in the “Snow & Meeting” scenario (S3,) one participant selected “News” in addition to the
gold-standard sensors and argued that s/he would only wake up for heavy snow, which is likely to be
mentioned in the news. Third, some alternative rules created by crowd workers may be caused by the
ambiguities in user’s instruction. For instance, in the following conversation of S4, the word “reply”
does not necessarily imply “sending a message” (although it might be the most common solution).
Therefore, “sending an email” is also acceptable.

user hi
user I know car accidents might happen if i talk on the phone while driving. so I would

like to reply “sorry I am driving” to anyone calling me when I’m driving.
crowd ok i will do so now

Finally, sometimes two different rules can behave similarly or even identically in the real world.
For example, in the “Bus” scenario (S5), the notification can either be fired when “the Bus 53 will
arrive at Washington St. in 5 miniutes” or when “Bus 53 is arriving at Hamilton St. stop now,” since
the Bus 53 usually takes 5 minutes to drive from Hamilton St. stop to Washington St. Both rules
occurred in our study.

140 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

8. DISCUSSION

In this paper we introduced InstructableCrowd, a system that allows users to create IF-THEN rules
for smartphones via conversation with the crowd. This work provides a potential route toward more
interesting conversations with intelligent agents than is currently possible. In this section we discuss
some of the issues and reflections that came from the development and study of InstructableCrowd.

8.1. Assessing Performance and Goal Achievement

The study showed that the performance of the crowd system is nearly the same as that of a typical GUI
in terms of the quality of the generated rules. This might lead some to question whether users would
want to use InstructableCrowd if it is not better than other options at creating accurate IF-THEN rules.
The motivation of InstructableCrowd is to challenge the traditional methods of manually composing
an IF-THEN rule within the context of performing complex tasks via alternative interfaces. The
key question we wanted to answer is: “Can the system perform as well as users themselves, while
employing a new method of doing it?”. Outsourcing complex tasks to the crowd is not always about
whether or not the system can do it “better.” Often it is about opening up an opportunity to achieve
the same goal using a different technology or method, in this case via natural language interface.
In this respect, “better” really depends on how one is assessing achievement of the goal. In prior
projects within this theme, crowd-powered systems have not always performed better than users. In
WearWrite (Nebeling et al., 2016), Chorus (Lasecki et al., 2013b), and Knowledge Accelerator (Hahn
et al., 2016; Chang et al., 2016), the proposed solutions did not necessarily produce results that were
faster or of higher quality than traditional methods. The value of these projects was opening up new
possibilities of completing tasks in ways that were not possible before, especially with respect to
flexibility. Creating a blog post by talking to a smartwatch with WearWrite will not necessarily result
in higher article quality than typing it on a laptop, but the system lets users create content on the fly
nearly anywhere. Searching via Chorus crowd workers might not provide better results than just
using a search engine, but it is much more convenient. Similarly, Knowledge-Accelerator’s use of
crowd workers allows a user to ask an open-ended question and get a sophisticated answer in few
hours, and open-ended questions are something that computers do not deal with very well.

8.2. Challenges in Producing High-Quality Rules

Creating a multi-part IF-THEN rule is difficult because computer-executable rules (like all programs)
have little tolerance for mistakes. If we break down an IF-THEN rule to a composition of sensors
and effectors with attribute values, experiments have shown that humans are reasonably good at
composing sensors/effectors and filling their attributes, respectively. However, when we add up
all the work, any mistakes will make the resulting IF-THEN rule ineffective. A natural response
to issue would be to enforce stricter validation for human input in rule creation. However, strict
input validation on the interface would increase the time it takes to create a rule for both users and
the crowd and frustrate users more easily. It would also increase the engineering effort required to
add a new sensor or effector to the system, which often come with arbitrary constraints. IFTTT, as
a successful rule-creation product, avoids multiple sensors and effectors, and uses a user-friendly
workflow to balance possible user frustration. Our project suggests using conversation and iterative
editing to permit robust rule creation.

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 141

8.3. Rule Validation

One of the most common issues faced by the Decision-Rule Engine is the rule conflict resolution issue:
deciding which rule should be triggered when there are multiple with the same set of conditions (IFs)
but a different set of actions (THENs). If a user receives multiple rules during the same conversational
session, it is reasonable to assume that they are redundant and to allow the user to pick only a single
rule from this set. However, if the user creates many rules in many different sessions, he or she
may forget about a created rule and attempt to create the same rule again. Furthermore, the user
may at first create a very specific rule (e.g., IF I have a meeting at 9 am, THEN notify me the night
before) and later try to generalize it (e.g., IF I have a meeting at 10 am or earlier, THEN notify me
the night before). If the Decision-Rule Engine were to follow these rules regardless of conflicts,
the same action might be executed more than once, which is not likely the user’s intent. Currently,
the Monitoring/Tracking module may detect these kinds of conflicts and automatically subsume the
less-used rules, but further research is required into identifying these cases and alerting the user in
advance. One approach could be keeping these conflicting rules and defining some heuristics that
would determine when a rule should subsume or inhibit others, or when they should be executed
sequentially, etc. Another approach could be defining a mechanism that removes those rules that are
redundant or conflicting and less relevant than others (with the user’s approval).

8.4. Timing of Executing Triggers and Actions

Different sensors and effectors may require very different frequencies. For example, while a weather-
related sensor trigger such as “IF it is snowing early in the morning” can be checked once every 24
hours, a “phone body” sensor trigger connected to the phone’s accelerometer (e.g., “IF the phone
is dropping towards the floor”) might need to be checked every 100 milliseconds. Other sensor
conditions, such as calendar events (e.g. “IF I have a meeting tomorrow before 10am”) may be
validated immediately after the rule is created, and then checked again every hour (in case new
meetings have been added). Similarly, effectors also have different execution timing requirements.
Some actions can be executed immediately after the conditions are met, while others must be
scheduled for later execution. For instance, the action “THEN show me a notification right now” is
executed right after the conditions are fulfilled, whereas the action “THEN send me a reminder tonight
at 10 pm” would be scheduled for execution at the appropriate time. Currently, the Rule Validator in
InstructableCrowd’s middleware uses different timing validation mechanisms for different sensors
and effectors. To scale up to a larger number of sensors and effectors, a more systematic manner for
categorizing the frequency ranges of sensors and effectors is likely required.

8.5. User Privacy

One participant in our study expressed a concern about user privacy. In the current prototype, a
limited view of a user’s personal information (e.g., a contact list created for the purpose of the
study) was exposed to crowd workers. In the future, we may use aliases that are either automatically
assigned or created by the user to prevent true names or other information from being disseminated
to crowd workers. For instance, instead of an actual address, the user could provide an alias such
as “Home” or “Office” when talking to the crowd. Aliases can also be used to protect information
about people or time (e.g., using “Wife” instead of “Amy,” or “Birthday” instead of the actual date.)
However, the use of aliases cannot completely prevent the user from providing personal information

142 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

in conversation. While several privacy-preserving human computation workflows have been proposed
for annotating videos (Lasecki et al., 2015) and accessing users’ personal information (Swaminathan
et al., 2017), privacy is still a well-known issue in the field of crowdsourcing, since the data is
processed by human workers. A future direction is to further explore privacy issues that may arise
with conversational interfaces.

8.6. Limitations

One natural limitation of the architecture of InstructableCrowd is that all the sensors and effectors
must be comprehensible to the majority of crowd workers. For example, despite being one of the
most common built-in sensors in smartphones, the accelerometer sensor’s raw output is very difficult
to use directly by non-experts to interpret certain movements of the phone (e.g., falling or being in
motion while driving or walking). Future systems may find value in explicitly recruiting to their
crowds people with programming expertise who can provide abstractions of raw sensor values that
could be shared and reused by others. Using current sensors to express high-level semantics (e.g.,
determining when the user is sleeping) requires specialized knowledge that most crowd workers
likely do not have. IF-THEN rules have low tolerance for mistakes, and quality control is still an
essential challenge in crowdsourcing. It may be useful to explore ways for the rules that are created
to form a part of a probabilistic suggestion system, i.e., instead of automatically conducting an action
that may or may not be correct, ask the user whether or not to do it.

9. FUTURE WORK

InstructableCrowd suggests a number of opportunities for future work. With the help of crowd
workers, InstructableCrowd is able to convert a natural language conversation to an IF-THEN rule.
Human workers are known to be able to perform various tasks that automated systems still can
not do, however, often with the cost of longer latency and higher operating budget. One natural
follow-up step is to explore the potential of automating the process of InstructableCrowd. While
the automated approach did not perform as well as humans in prior work, a better performance
can be expected when the system is able to collect larger amount of training data. Furthermore,
the attribute filling task in creating IF-THEN rules is similar to the “slot filling” task in dialogue
systems, in which we can take advantage of existent approaches such as Conditional Random Fields
(CRF) (Raymond and Riccardi, 2007) or Recurrent Neural Networks (RNN) (Mesnil et al., 2015).
Creating multi-part IF-THEN rules is a challenging task, for both human and machines. We imagine
a future that automated components can work with human workers to make such systems more robust
and scalable.

Furthermore, InstructableCrowd introduced a new interaction paradigm of conversational agents,
which can not only be implemented in smartphones, but also be applied to smart homes, smart
watches, voice-enabled devices such as Amazon’s Echo, or smart cars in hand-free scenarios. End-
users can freely record the problems the are experiencing and create an IF-THEN rule to solve it
via any devices that are available at the spot. Figure 10 illustrates potential user scenarios of future
InstructableCrowd on different devices. In a smart home setting, when the user open the smart
refrigerator and find that they are out of milk, he/she can tell their Echo in the kitchen to create a
rule that reminds them they do not have much milk left in the refrigerator (Figure 10 (a)); when a
professor realizes that the next meeting will not be held in his/her own office but can not remember

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 143

Ah…Okay. Send my partner a

message whenever I get stuck

in traffic on the way home...

Can you remind me every

time when we are out of milk?

(a) (b) (c)

Remind me the locations of

my meetings when they are

not taking place in my office!

Figure 10. Scenarios of future conversational assistants that allow end-users to verbally create
IF-THEN rules to control smart devices. When end-users experience a problem such as (a)

being out of milk, (b) forgetting the meeting room, or (c) getting stuck in traffic when driving
home, they can verbally instruct their assistants at the scene to set up IF-THEN rules to prevent

the problems from happening again. The framework of InstructableCrowd can not only
implement on the mobile phone, but also smart watch and voice-enabled devices such as

Amazon’s Echo.

the room, he/she can set up a rule be talking to the smartwatch to set up a push notification about the
room if the incoming meeting is in a different room; and when users get stuck in traffic when driving
home, they can talk to the smart car panel and set up an automatic message whenever they will be
late home (Figure 10 (c)). Voice interface opens up many possibilities of end-users to keep track of
their behavior and improve life quality in the moment, and we believe that enabling users to create
IF-THEN rules by talking to their smartphones is a promising start.

10. CONCLUSION

In this paper we introduced InstructableCrowd, a system that allows end users to create complex
IF-THEN rules via voice in collaboration with the crowd. These rules connect to the sensors and
the effectors on the user’s phone where the sensors serve as triggers and the effectors as actions.
We have built support for crowd workers to have a conversation with the users and allow them to
suggest rules for the users. A user study shows that non-programmers can effectively create rules
via conversation, and suggests that collaboration between the user and the crowd while creating
IF-THEN rules could be a fruitful area for future research. As we collect examples of IF-THEN rules,
we will look for ways to use them to automate the creation of common IF-THEN patterns. More
broadly, InstructableCrowd represents a new approach in which end users work with remote crowd
workers to bring about powerful functionality despite the constraints of mobile and wearable devices.

144 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

11. ACKNOWLEDGEMENTS

This work was funded by the National Science Foundation under Award #IIS-1816012, and as part
of the Yahoo! InMind project. We thank the workers on Amazon Mechanical Turk for making this
work possible.

12. REFERENCES
Artzi, Y and Zettlemoyer, L. (2013). Weakly supervised learning of semantic parsers for mapping instructions to actions. Transactions

of the Association for Computational Linguistics 1 (2013), 49–62.

Avrahami, D, Fussell, S. R, and Hudson, S. E. (2008). IM waiting: timing and responsiveness in semi-synchronous communication. In
Proceedings of the 2008 ACM conference on Computer supported cooperative work. ACM, 285–294.

Azaria, A, Krishnamurthy, J, and Mitchell, T. M. (2016). Instructable Intelligent Personal Agent. In Proc. AAAI ’16 (AAAI ’16).

Bigham, J. P, Lau, T, and Nichols, J. (2009). Trailblazer: Enabling Blind Users to Blaze Trails Through the Web. In Proceedings
of the 14th International Conference on Intelligent User Interfaces (IUI ’09). ACM, New York, NY, USA, 177–186. DOI:http:
//dx.doi.org/10.1145/1502650.1502677

Bolchini, C, Curino, C. A, Quintarelli, E, Schreiber, F. A, and Tanca, L. (2007). A Data-oriented Survey of Context Models. SIGMOD
Rec. 36, 4 (Dec. 2007), 19–26. DOI:http://dx.doi.org/10.1145/1361348.1361353

Brambilla, M, Fraternali, P, and Vaca Ruiz, C. K. (2012). Combining social web and BPM for improving enterprise performances: the
BPM4People approach to social BPM. In Proceedings of the 21st international conference companion on World Wide Web. ACM,
223–226.

Bronsted, J, Hansen, K. M, and Ingstrup, M. (2010). Service composition issues in pervasive computing. IEEE Pervasive Computing 9,
1 (2010), 62–70.

Brush, A. B, Lee, B, Mahajan, R, Agarwal, S, Saroiu, S, and Dixon, C. (2011). Home Automation in the Wild: Challenges and
Opportunities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY,
USA, 2115–2124. DOI:http://dx.doi.org/10.1145/1978942.1979249

Chang, J. C, Kittur, A, and Hahn, N. (2016). Alloy: Clustering with Crowds and Computation. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 3180–3191. DOI:http://dx.doi.org/
10.1145/2858036.2858411

Chaurasia, S and Mooney, R. J. (2017). Dialog for Language to Code. In Proceedings of the Eighth International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), Vol. 2. 175–180.

Dahl, Y and Svendsen, R.-M. (2011). End-user composition interfaces for smart environments: A preliminary study of usability factors.
In International Conference of Design, User Experience, and Usability. Springer, 118–127.

Daniel, F, Imran, M, Soi, S, Angeli, A, Wilkinson, C. R, Casati, F, and Marchese, M. (2012). Developing mashup tools for end-users:
on the importance of the application domain. Int. J. Next-Generat. Comput 3, 2 (2012).

De Russis, L and Corno, F. (2015). HomeRules: A Tangible End-User Programming Interface for Smart Homes. In Proceedings of the
33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’15). ACM, New York, NY,
USA, 2109–2114. DOI:http://dx.doi.org/10.1145/2702613.2732795

Dey, A. K, Sohn, T, Streng, S, and Kodama, J. (2006). iCAP: Interactive prototyping of context-aware applications. In International
Conference on Pervasive Computing. Springer, 254–271.

Dong, L and Lapata, M. (2016). Language to logical form with neural attention. arXiv preprint arXiv:1601.01280 (2016).

Ghiani, G, Manca, M, and Paternò, F. (2015). Authoring Context-dependent Cross-device User Interfaces Based on Trigger/Action
Rules. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia (MUM ’15). ACM, New York,
NY, USA, 313–322. DOI:http://dx.doi.org/10.1145/2836041.2836073

Hahn, N, Chang, J, Kim, J. E, and Kittur, A. (2016). The Knowledge Accelerator: Big Picture Thinking in Small Pieces. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 2258–2270. DOI:
http://dx.doi.org/10.1145/2858036.2858364

Häkkilä, J, Korpipää, P, Ronkainen, S, and Tuomela, U. (2005). Interaction and end-user programming with a context-aware mobile
application. In IFIP Conference on Human-Computer Interaction. Springer, 927–937.

Hanson, E. N and Widom, J. (1993). An overview of production rules in database systems. The Knowledge Engineering Review 8, 02
(1993), 121–143.

http://dx.doi.org/10.1145/1502650.1502677
http://dx.doi.org/10.1145/1502650.1502677
http://dx.doi.org/10.1145/1361348.1361353
http://dx.doi.org/10.1145/1978942.1979249
http://dx.doi.org/10.1145/2858036.2858411
http://dx.doi.org/10.1145/2858036.2858411
http://dx.doi.org/10.1145/2702613.2732795
http://dx.doi.org/10.1145/2836041.2836073
http://dx.doi.org/10.1145/2858036.2858364

T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1 145

Huang, J and Cakmak, M. (2015). Supporting Mental Model Accuracy in Trigger-action Programming. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA, 215–225.
DOI:http://dx.doi.org/10.1145/2750858.2805830

Huang, T.-H. K, Chang, J. C, and Bigham, J. P. (2018). Evorus: A Crowd-powered Conversational Assistant Built to Automate Itself
Over Time. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 295, 13 pages. DOI:http://dx.doi.org/10.1145/3173574.3173869

Huang, T.-H. K, Lasecki, W. S, Azaria, A, and Bigham, J. P. (2016). “Is there anything else I can help you with?”: Challenges in
Deploying an On-Demand Crowd-Powered Conversational Agent. In Proceedings of AAAI Conference on Human Computation and
Crowdsourcing 2016 (HCOMP 2016). AAAI.

Huang, T. K, Lasecki, W. S, and Bigham, J. P. (2015). Guardian: A Crowd-Powered Spoken Dialog System for Web APIs. In Pro-
ceedings of the Third AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2015, November 8-11, 2015, San
Diego, California., Elizabeth Gerber and Panos Ipeirotis (Eds.). AAAI Press, 62–71. http://www.aaai.org/ocs/index.php/HCOMP/
HCOMP15/paper/view/11599

IFTTT May 20, . E. (2017). IF by IFTTT - Android Apps on Google Play. (May 2017). https://play.google.com/store/apps/details?id=
com.ifttt.ifttt

Jara, J, Daniel, F, Casati, F, and Marchese, M. (2013). From a simple flow to social applications. In Current Trends in Web Engineering.
Springer, 39–50.

Kokciyan, N, Uskudarli, S, and Dinesh, T. (2012). User generated human computation applications. In Privacy, Security, Risk and Trust
(PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom). IEEE, 593–598.

Lasecki, W. S, Gordon, M, Leung, W, Lim, E, Bigham, J. P, and Dow, S. P. (2015). Exploring Privacy and Accuracy Trade-Offs in
Crowdsourced Behavioral Video Coding. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 1945–1954.

Lasecki, W. S, Thiha, P, Zhong, Y, Brady, E, and Bigham, J. P. (2013)a. Answering Visual Questions with Conversational Crowd
Assistants. In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’13).
ACM, New York, NY, USA, Article 18, 8 pages. DOI:http://dx.doi.org/10.1145/2513383.2517033

Lasecki, W. S, Wesley, R, Nichols, J, Kulkarni, A, Allen, J. F, and Bigham, J. P. (2013)b. Chorus: A Crowd-powered Conversational
Assistant. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST ’13). ACM, New
York, NY, USA, 151–162. DOI:http://dx.doi.org/10.1145/2501988.2502057

LaToza, T. D and van der Hoek, A. (2016). Crowdsourcing in Software Engineering: Models, Motivations, and Challenges. IEEE
Software 33, 1 (2016), 74–80.

Lau, T, Cerruti, J, Manzato, G, Bengualid, M, Bigham, J. P, and Nichols, J. (2010). A Conversational Interface to Web Automation.
In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology (UIST ’10). ACM, New York, NY,
USA, 229–238. DOI:http://dx.doi.org/10.1145/1866029.1866067

Law, E and von Ahn, L. (2009). Input-agreement: A New Mechanism for Collecting Data Using Human Computation Games. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 1197–
1206. DOI:http://dx.doi.org/10.1145/1518701.1518881

Leshed, G, Haber, E. M, Matthews, T, and Lau, T. (2008). CoScripter: Automating & Sharing How-to Knowledge in the Enterprise. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08). ACM, New York, NY, USA, 1719–1728.
DOI:http://dx.doi.org/10.1145/1357054.1357323

Lieberman, H, Paternò, F, Klann, M, and Wulf, V. (2006). End-user development: An emerging paradigm. Springer.

Liu, C, Chen, X, Shin, E. C, Chen, M, and Song, D. (2016). Latent attention for if-then program synthesis. In Advances in Neural
Information Processing Systems. 4574–4582.

Mackay, W. E, Malone, T. W, Crowston, K, Rao, R, Rosenblitt, D, and Card, S. K. (1989). How do experienced Information Lens users
use rules? 20, SI (1989).

Mesnil, G, Dauphin, Y, Yao, K, Bengio, Y, Deng, L, Hakkani-Tur, D, He, X, Heck, L, Tur, G, Yu, D, and others, . (2015). Using
recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 23, 3 (2015), 530–539.

Nebeling, M, To, A, Guo, A, de Freitas, A. A, Teevan, J, Dow, S. P, and Bigham, J. P. (2016). WearWrite: Crowd-Assisted Writing
from Smartwatches. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 3834–3846. DOI:http://dx.doi.org/10.1145/2858036.2858169

Price, D, Rilofff, E, Zachary, J, and Harvey, B. (2000). NaturalJava: a natural language interface for programming in Java. In Proceedings
of the 5th international conference on Intelligent user interfaces. ACM, 207–211.

http://dx.doi.org/10.1145/2750858.2805830
http://dx.doi.org/10.1145/3173574.3173869
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/view/11599
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/view/11599
https://play.google.com/store/apps/details?id=com.ifttt.ifttt
https://play.google.com/store/apps/details?id=com.ifttt.ifttt
http://dx.doi.org/10.1145/2513383.2517033
http://dx.doi.org/10.1145/2501988.2502057
http://dx.doi.org/10.1145/1866029.1866067
http://dx.doi.org/10.1145/1518701.1518881
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/2858036.2858169

146 T.-H. K. Huang, A. Azaria, O. J. Romero and J. P. Bigham / Human Computation (2019) 6:1

Quirk, C, Mooney, R. J, and Galley, M. (2015). Language to Code: Learning Semantic Parsers for If-This-Then-That Recipes.. In ACL
(1). 878–888.

Raymond, C and Riccardi, G. (2007). Generative and discriminative algorithms for spoken language understanding.. In INTERSPEECH.
1605–1608.

Romero, O. J and Akoju, S. (2018). An Efficient Mobile-Based Middleware Architecture for Building Robust, High-Performance Apps.
In Proceedings of the IEEE International Conference on Software Architecture Companion (ICSA-C). 97–100.

Swaminathan, S, Fok, R, Chen, F, Huang, T.-H. K, Lin, I, Jadvani, R, Lasecki, W, and Bigham, J. (2017). WearMail: On-the-Go Access
to Information in Your Email with a Privacy-Preserving Human Computation Workflow. In 30th ACM Symposium on User Interface
Software and Technology (UIST 2017).

Tomazini, L, Romero, O. J, and Hruschka, E. J. (2017). An Architectural Approach for Developing Intelligent Personal Assistants
Supported by NELL. In ENIAC (Encontro Nacional de InteligÃłncia Artificial e Computacional).

Tuomisto, T, Kymäläinen, T, Plomp, J, Haapasalo, A, and Hakala, K. (2014). Simple Rule Editor for the Internet of Things. In Intelligent
Environments (IE), 2014 International Conference on. IEEE, 384–387.

Ur, B, McManus, E, Pak Yong Ho, M, and Littman, M. L. (2014). Practical Trigger-action Programming in the Smart Home. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 803–812.
DOI:http://dx.doi.org/10.1145/2556288.2557420

Von Ahn, L and Dabbish, L. (2004). Labeling images with a computer game. In Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 319–326.

von Ahn, L and Dabbish, L. (2008). Designing Games with a Purpose. Commun. ACM 51, 8 (Aug. 2008), 58–67. DOI:http://dx.doi.
org/10.1145/1378704.1378719

Walker, M and Passonneau, R. (2001). DATE: a dialogue act tagging scheme for evaluation of spoken dialogue systems. In Proceedings
of the first international conference on Human language technology research. Association for Computational Linguistics, 1–8.

Yeh, T, Chang, T.-H, and Miller, R. C. (2009). Sikuli: Using GUI Screenshots for Search and Automation. In Proceedings of the
22Nd Annual ACM Symposium on User Interface Software and Technology (UIST ’09). ACM, New York, NY, USA, 183–192. DOI:
http://dx.doi.org/10.1145/1622176.1622213

Yin, P and Neubig, G. (2017). A Syntactic Neural Model for General-Purpose Code Generation. In The 55th Annual Meeting of the
Association for Computational Linguistics (ACL). Vancouver, Canada. https://arxiv.org/abs/1704.01696

http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/1378704.1378719
http://dx.doi.org/10.1145/1378704.1378719
http://dx.doi.org/10.1145/1622176.1622213
https://arxiv.org/abs/1704.01696

	Introduction
	Related Work
	End-User Programming
	Crowd-powered Conversational Agents
	Automatic IF-THEN Rules Generation

	Instructable-Crowd
	Rules, Sensors, and Effectors
	Conversational Agent for the End-user
	Rule Editor for the End-user
	Worker Interface
	Merge Multiple Crowd-Created Rules by Voting
	Modular Sensors (IF) & Effectors (THEN)
	Decision Rule Engine

	User Study
	Scenario Design
	User Study Setup

	Rule Quality Evaluation
	Evaluation of Sensor/Effector Selection
	Evaluation of Attribute Filling

	User Active Time
	Qualitative Results
	Feedback from Participants
	Information Inquiry, Confirmation and Suggestions in Conversations
	Alternative Solutions for the Same Scenario

	Discussion
	Assessing Performance and Goal Achievement
	Challenges in Producing High-Quality Rules
	Rule Validation
	Timing of Executing Triggers and Actions
	User Privacy
	Limitations

	Future Work
	Conclusion
	Acknowledgements
	References

