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Abstract

Natural language dialog is an important and intuitive
way for people to access information and services.
However, current dialog systems are limited in scope,
brittle to the richness of natural language, and expensive
to produce. This paper introduces Guardian, a crowd-
powered framework that wraps existing Web APIs into
immediately usable spoken dialog systems. Guardian
takes as input the Web API and desired task, and the
crowd determines the parameters necessary to complete
it, how to ask for them, and interprets the responses
from the API. The system is structured so that, over
time, it can learn to take over for the crowd. This hy-
brid systems approach will help make dialog systems
both more general and more robust going forward.

Introduction
Conversational interaction allows users to access computer
systems and satisfy their information needs in an intu-
itive and fluid manner, especially in mobile environments.
Recently, spoken dialog systems (SDSs) have made great
strides in achieving that goal. It is now possible to speak to
computers on the phone via conversational assistants on mo-
bile devices, e.g. Siri, and, increasingly, from wearable de-
vices on which non-speech interaction is limited. However,
despite decades of research, existing spoken dialog systems
are limited in scope, brittle to the complexity of language,
and expensive to produce. While systems such as Apple’s
Siri integrate a core set of functionality for a specific device
(e.g. basic phone functions), they are limited to a pre-defined
set of interactions and do not scale to the huge number of ap-
plications available on today’s smartphones, or web services
available on the Internet.

Despite frameworks which have been proposed to reduce
the engineering efforts of developing a dialog system (Bo-
hus et al. 2007), constructing spoken language interfaces is
still well-known as a costly endeavor. Moreover, this process
must be repeated for each application since general-purpose
conversational support is beyond the scope of existing dialog
system approaches. Therefore, to tackle these challenges, we
introduces Guardian, a framework that uses Web APIs (Ap-
plication Programming Interfaces) combined with crowd-
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sourcing to efficiently and cost-effectively enlarge the scope
of existing spoken dialog systems. Furthermore, Guardian
is structured so that, over time, an automated dialog system
could be learned from the chat logs collected by our dialog
system and gradually take over from the crowd.

Web-accessible APIs can be viewed as a gateway to
the rich information stored on the Internet. The Web con-
tains tens of thousands of APIs (many of which are free)
that support access to myriad resources and services. As
of April 2015, ProgrammableWeb1 alone contains the de-
scription of more than 13,000 APIs in categories includ-
ing travel (1,073), reference (1,342), news (1,277), weather
(368), health (361), food (356), and many more. These Web
APIs can encompass the common functions of popular exist-
ing SDSs, such as Siri, which is often used to send text mes-
sages, access weather reports, get directions, and find nearby
restaurants. Therefore, if SDSs are able to exploit the rich
information provided by the thousands of available APIs on
the web, their scope would be significantly enlarged.

However, automatically incorporating Web APIs into an
SDS is a non-trivial task. To be useful in an application like
Siri, these APIs need to be manually wrapped into conver-
sational templates. However, these templates are brittle be-
cause they only address a small subset of the many ways
to ask for a particular piece of information. Even a topic
as seemingly straightforward as weather can be tricky. For
example, Siri has no trouble with the query “What is the
weather in New Orleans?”, but cannot handle “Will it be
hot this weekend in the Big Easy?” The reason is that the
seemingly simple latter question requires three steps: rec-
ognizing that hot refers to temperature, temporally resolv-
ing weekend, and recognizing “the Big Easy” as slang for
“New Orleans.” These are all difficult problems to solve
automatically, but people can complete each fairly easily,
thus Guardian uses crowdsourcing to disambiguate complex
language. Though crowd-powered dialog systems suffer the
drawback not being as fast as fully automated systems, we
are optimistic that they can be developed and deployed much
more quickly for new applications. While they might incur
more cost on a per-interaction basis, they would avoid the
huge overhead of an engineering team, and enable quickly
prototyping dialog systems for new kinds of interactions.

1http://www.programmableweb.com
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To this end, we propose a crowd-powered Web-API-based
Spoken Dialog System called Guardian (of the Dialog).
Guardian leverages the wealth of information in Web APIs
to enlarge its scope. The crowd is employed to bridge the
SDS with the Web APIs (offline phase), and a user with the
SDS (online phase).

In the offline phase of Guardian , the main goal is to con-
nect the useful parameters in the Web APIs with actual nat-
ural language questions which are used to understand the
user’s query. As there are certain parameters in each Web
API which are more useful than others when performing an
effective query on the API, it is crucial that we know which
questions to ask the user to acquire the important parame-
ters. There are three main steps in the offline phase, where
the first two can be run concurrently. First, crowd-powered
QA pair collection generates a set of questions (which in-
cludes follow-up questions) that will be useful in satisfying
the information need of the user. Second, crowd-powered
parameter filtering filters out “bad” parameters in the Web
APIs, thus shrinking the number of candidate useful pa-
rameters for each Web API. Finally, crowd-powered QA-
parameter matching not only matches each question with
a parameter of the Web API, but also creates a ranking of
which questions are more important is also acquired. This
ranking enables Guardian to ask the more important ques-
tions first to faster satisfy the user’s information need.

In the online phase of Guardian, the crowd is in charge
of Dialog Management, Parameter Filling, and Response
Generation. Dialog management focuses on deciding which
questions to ask the user, and when to trigger the API given
the current status of the dialog. The task of parameter fill-
ing is to associate the information acquired from the user’s
answers with the parameters in the API. For response gen-
eration, the crowd translates the results returned by the API
(which is usually in JSON format) into a natural language
sentence readable by the user.

To demonstrate the effectiveness of Web-API-based
crowd-powered dialog systems, the Guardian system cur-
rently has 8 Web APIs incorporated, which cover topics in-
cluding weather, movies, food, news, and flight information.
We first show that our proposed method is effective in asso-
ciating questions with important Web API parameters (QA-
parameter matching). Then, we present real-world dialog ex-
periments on 3 of the 8 Web APIs, and show that Guardian
as able to achieve a task completion rate of 97%.

The contributions of this paper are two-fold:

• We propose a Web-API based, crowd-powered spoken di-
alog system which can significantly increase the cover-
age of dialog systems in a cost-effective manner, and also
collect valuable training data to improve automatic dialog
systems.

• We propose an effective workflow to combine expert and
non-expert workers to translate Web APIs into a usable di-
alog system format. Our method has the potential to scale
to thousands of APIs.

Figure 1: The user interface for crowd workers in Guardian.
The left-hand side is a chat box that displays the running
dialog. The right-hand side is the working panel displaying
decision-making questions.

Background and Related Work
Our approach to generating dialog systems using the crowd
builds on prior work on dialog system design, as well as in-
teractive and offline human computation via crowdsourcing.

Dialog Systems
There is a considerable body of research on goal-oriented
spoken dialog systems ranging in domain from travel plan-
ning (Xu and Rudnicky 2000) to tutoring students (Litman
and Silliman 2004). Systems vary in their approach to dia-
log from simple slot-filling (Bobrow et al. 1977), to com-
plex plan-based dialog management architectures (Fergu-
son, Allen, and others 1998; Horvitz and Paek 1999). A
common strategy for simulating and prototyping is Wizard-
of-Oz (WoZ) control (Maulsby, Greenberg, and Mander
1993). Crowd-powered dialog systems can be viewed as a
natural extension of WoZ prototypes with several important
characteristics. First, they have the potential to be deployed
quickly, with easily-recruited workers powering the system
as it learns to automate itself. Second, different groups of
workers control different aspects of the system, resulting
in an “assembly-line” of dialog system controllers, each of
which can specialize in one specific aspect – for example,
mapping the user’s utterances into changes in dialog state,
or guiding the dialog policy. This division of roles could en-
able more complex systems than those controlled by a single
“wizard,” and offers a path toward automation as computa-
tion takes over for controller as it is able to do so.

Prior work has also considered how the interfaces of Web
applications implicitly define APIs (Hartmann et al. 2007),
and how they can be used to create APIs for resources that
do not otherwise expose one (Bigham et al. 2008).

Crowdsourced Question Answering
Our approach leverages prior work in human computation to
bootstrap the creation of automated dialog systems. Human
computation (Von Ahn 2009) has been shown to be useful
in many areas, including writing and editing (Bernstein et
al. 2010), image description and interpretation (Bigham et
al. 2010; Von Ahn and Dabbish 2004a), and protein folding
(Cooper et al. 2010).
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The crowd can be quick. VizWiz was one of the first sys-
tems to elicit nearly real-time responses from the crowd by
using a queueing model (Bigham et al. 2010). Other sys-
tems have shown that asking workers to wait while others
join (Von Ahn and Dabbish 2004a; Chilton 2009) can be ef-
fectively used to have workers ready at a moment’s notice
(within a second or two). Combining this with continuous
interaction has resulted in total per-response latencies under
5 seconds (Lasecki et al. 2012).

Chorus enables a real-time conversation with a crowd
of workers as if they were a single conversational partner
(Lasecki et al. 2013). Constructive, on-topic responses are
elicited from workers using an incentive mechanism that en-
courages workers to balance response speed with accuracy
to the best of their ability (Singh et al. 2012).

Framework of the Guardian System
The workflow we introduced consists of two phases: an “of-
fline” phase and an “online” phase. The offline phase is a
preparation process prior to the online phase. During the of-
fline phase, necessary parameters are selected and questions
are collected that will be used to query for those parameters
during the online phase. The online phase is run in real-time
through an interactive dialog. For each API, the offline phase
only needs to be run once.

Figure 2: Offline Phase: A 3-stage Parameter Voting Work-
flow. Untrained crowd workers collect question and answer
(QA) pairs related to the task, filter out unnatural parameters,
and match each QA pair with the most relevant parameter.

Offline Phase: Translate a Web API to a Dialog
System with the Crowd
As a preparation of the Guardian system, we propose a pro-
cess powered by a non-expert crowd to select proper param-
eters that fit in the usages of dialog systems. As a byproduct,
this process also generates a set of questions associated with
parameters that can be used in the Guardian dialog manage-
ment component as default follow-up questions.

The goal of this process is to significantly lower the
threshold for programmers to contribute to our system, and
thus make adding thousands of web APIs into the Guardian
system possible. As shown in Figure 2, our process consists
of 3 steps: First, given an API with a task, we collect var-
ious question and answer pairs related to the task. Second,

to shrink the size of the parameters, we perform a filtering
to prune out any “unnatural” parameters. Finally, we design
a voting-like process where unskilled workers vote for the
“best” parameters for each question.

Note that whether a parameter is optional or required is
separate from their “applicability”. For instance, in the Yelp
API you need to specify the location by using one of the
following three parameters: (1) city name, (2) latitude and
longitude, or (3) geographical bounding box. The three pa-
rameters are “required parameters”; however, only the (1),
city name, is likely to be mentioned in a natural dialog. We
focus only on developing the workflow to enable unskilled
crowd workers to rate the “applicability” of parameters. The
“optional/required” status of the parameters is best realized
when implementing the API wrapper.

Question-Answer (QA) Pair Collection The first stage is
to collect various questions associated with the task. We ask
crowd workers the following question: “A friend wants to
[task description] and is calling you for help. Please enter
the questions you would ask them back to help accomplish
their task.” We also ask the workers for the first, second,
and third questions they would ask the other person, along
with possible answers their conversational partner may re-
ply with. This process is iteratively developed based on our
experiments. We collect more multiple questions to increase
the diversity of collected data. In our preliminary study, we
found that for some tasks like finding food, the very first
questions among different workers are quite similar (i.e.,
“What kind of food would you like?”). Moreover, instead
of collecting only questions, we also collect corresponding
answers, because question-answer pairs provide more clues
to pick the best parameters in the next stage.

Parameter Filtering In the second stage, we perform a
filtering process with an unskilled crowd to shrink the size
of candidate parameters. Scalability is a practical challenge
that often occurs when trying to apply general voting mech-
anisms to parameters of an API. For any API with N param-
eter and M QA pairs, there will be a total of N ∗ M deci-
sions to make. For some more complicated APIs with large
numbers of parameters, the cost would be considerable. Our
solution is to adopt a filtering step before the actual voting
stage. Based on the idea that humans are good at identifying
outliers at a glance, we propose a method that simply shows
all the parameters (with the names, types, and descriptions
of the parameters) on the same web page to the workers,
and ask them to select all the “unnatural” items that are un-
likely to be mentioned in real-world conversations, or are
obviously designed for computers and programmers.

QA-Parameter Matching In the third stage, we match the
QA pairs collected from Stage 1 against the remaining pa-
rameters from Stage 2. We display one QA pair along with
all the parameters at once, and ask crowd workers the fol-
lowing question: “In this conversation, which of the follow-
ing piece of information is provided in the answer? The fol-
lowings are parameters that used in a computer system. The
descriptions could be confusing, or even none of them re-
ally fit. Please try your best to choose the best one.” For
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each represented QA pair, the workers are first required to
pick one best parameter, and then rate their confidence level
(low=1, medium=2, and high=3). This mechanism is devel-
oped empirically, and our experiments will demonstrate that
this process could not only pick a good set of parameters
for the dialog system application, but also pick good ques-
tions associated with each selected parameter. The workers’
interface is shown in Figure 3.

Figure 3: The interface for crowd workers to match of pa-
rameters to natural language questions.

Online Phase: Crowd-powered Spoken Dialog
System for Web APIs
To utilize human computation to power a spoken dialog sys-
tem, we address two main challenges: rapid information col-
lection and response generation in real-time. Conceptually, a
task-oriented dialog system performs a task by first acquir-
ing the information of preference, requirements, and con-
strains from the user, and then applies the information to
accomplish the task. Finally, the system reports the results
back to the user in spoken language. Our system architec-
ture is largely inspired by the solutions modern dialog sys-
tems use to simulate the process of human dialog which has
been proven reasonably robust and fast on handling dialogs.
To apply prior solutions which are developed originally with
the assumption that the response time of each component is
extremely short requires pushing the limits of crowd work-
ers’ speed to make the solution feasible. In Guardian, we
apply ESP-game-like parameter filling, crowd-powered di-
alog management, and template-based response generation
to tackle these challenges. The whole process is shown in
Figure 4.

Parameter Filling via Output Agreement To encourage
quality and speed of parameter extraction in Guardian, we
designed a multi-player output agreement process to extract
parameters from a running conversation. First, using a stan-
dard output agreement setup (von Ahn and Dabbish 2004b),
crowd workers propose their own answers of the parame-
ter value without communicating with each other. Guardian

Figure 4: On-line Phase: crowd workers extract the required
parameters and turn resulting JSON into responses.

automatically matches workers’ answers to ensure the qual-
ity of extracted parameter value. To prevent the system from
idling in the case that no answers match one another, a hard
time constraint is also set. The system selects the first answer
from workers when the the time constraint is reached.

Crowd-powered Dialog Management Second, we use
the idea of dialog management to control the dialog sta-
tus. Dialog management simulates a dialog as a process of
collecting a set of information – namely, parameters in the
context of web APIs. Based on which parameters are given,
the current dialog state can be further decided (Figure 5).
For most states, the dialog system’s actions are pre-defined
and can be executed automatically. Crowd workers are able
to vote to decide the best action within a short amount of
time. For example, in the dialog state where the query term
(“term”) is known but the location is unknown, a follow-up
question (e.g., ”Where are you?”) can be pre-defined. Fur-
thermore, the dialog management also controls when to call
the web API. For instance, in Figure 5, if only one parame-
ter is filled, the system would not reach to the state which is
able to trigger the API.

Figure 5: The State Diagram of dialog Management. In
the context of crowd-powered systems, introducing a dia-
log manager reduces the time it takes the crowd to generate
a response because most actions can be pre-defined and gen-
erated according to the dialog state.

Template-based Response Generation Finally, when we
get the query results from the web API, the response object
is usually in JSON format. To shorten the response time,
we propose to use a prepared template to convert a given
JSON file into a response to the user. In Guardian, we aim

65



Web API Task #Parameter
Filtered/Origin

Top
Parameter

Top Question of the
Top Parameter

1 Cat Fact Search for random cat facts 1 / 1 number tell my specificity what you
what to know ?

2 Eventful Look for events 14 / 16 include Is it local?

3 Flight Status Check flight status 8 / 9 flight What is your exact flight number?

4 RottenTomatoes Find information of movies 3 / 3 q Okay no problem, is that all?

5 Weather Underground Find the current weather 1 / 5 query Time?

6 Wikipedia Search for Wikipedia pages 7 / 15 action Do you have any topic in mind?

7 Yahoo BOSS
News Search Search for news 5 / 6 sites What information [sic] you want?

8 Yelp Search API Find restaurants 10 / 13 location Where?

Table 1: Selected Web APIs for parameter voting experiments. All of the 8 web APIs are used in the parameter voting experi-
ments (Experiment 1).

to develop a system that gradually increases the capability
to be automated. Therefore, instead of creating a separate
data annotation step, we visualize the JSON object which
contains the query results as an interactive web page, dis-
plays it to the crowd in real-time, and asks the crowd to
answer the user’s question based on the information in the
JSON file. The JSON visualization interface implemented
with JSON Visualizer2 is shown in Figure 6. When doing
this, Guardian records two types of data: The answer pro-
duced by the crowd, and the mouse clicks workers make
when exploring the JSON object visualization. By combin-
ing these two types of data, we are able to identify the im-
portant fields in the response JSON object that have fre-
quently been clicked, and also create natural-language tem-
plates mentioning these fields.

Note that in Guardian we focus on developing a task-
oriented dialog system, and assuming all the input utterance
are in-domain queries.

Figure 6: Interactive web UI to present the JSON data to
non-expert crowd workers. With this user-friendly interface,
unskilled workers can explore and understand the informa-
tion generated by the APIs.

2http://visualizer.json2html.com/

Retainer Model and Time Constraints To support real-
time applications with Guardian, we apply a retainer model
and enforce time constraints on most actions in the system.
The retainer model maintains a pool of waiting workers, and
then signals them when tasks arrive. Prior work has shown
that the retainer model is able to recall 75% of workers
within 3 seconds (Bernstein et al. 2011). Furthermore, for
most actions that workers can perform in the Guardian sys-
tem, time constraints are enforced. For instance, in the ESP-
game-like parameter filling stage, we set 30-second time
constraints for all workers. If a worker fails to submit an an-
swer within 30 seconds more than 5 times, the worker will
be logged out of the system.

Experiment 1: Translate Web API to Dialog
Systems with the Crowd

To examine the effectiveness of our proposed parameter
ranking workflow, we explore the ProgrammableWeb web-
site and select 8 popular web APIs for our experiment. To
focus on real-world human conversation, we select only the
text-based service rather than image or multimedia services,
and also avoid heavy weight APIs like social network APIs
or map APIs. We also define a task that is supported by
the API. The full list of the selected APIs is shown in Ta-
ble 1. Based on the task, we perform our Parameter Ranking
process mentioned above on all possible parameters of the
API. The Question-Answer Collection and Parameter Filter-
ing stages are performed on the CrowdFlower (CF) platform.
The Question-Parameter Matching is performed on Amazon
Mechanical Turk (MTurk) with our own implemented user
interface. The detailed experimental setting is as follows:
First, the question-answer collection experiment was run on
the CF platform. In our experiments, we use the following
scenario: a friend of the worker’s wants to know some infor-
mation but is not able to use the Internet, so the friend has
called them for help. We ask workers to input up to three
questions that they would ask this friend to clarify what in-
formation is needed. We also ask workers to provide the pos-
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MAP MRR
Parameter

Voting
Not

Unnatural
Ask
Siri

Ask a
Friend

Parameter
Voting

Not
Unnatural

Ask
Siri

Ask a
Friend

Cat Fact 1 1 1 1 1 1 1 1

Eventful 0.626 0.401 0.456 0.408 0.500 0.500 0.250 0.500

Flight Status 0.864 1 0.889 0.528 1 1 1 0.333

RottenTomatoes 1 0.333 0.333 0.333 1 0.333 0.333 0.333

Weather Underground 1 1 0.333 0.200 1 1 0.333 0.200

Wikipedia 0.756 0.810 0.250 0.331 1 1 0.250 0.333

Yahoo BOSS News Search API 0.756 0.917 0.867 0.917 1 1 1 1

Yelp Search API 0.867 0.458 0.500 0.578 1 0.333 0.500 1

Average 0.858 0.740 0.578 0.537 0.938 0.771 0.583 0.588

Table 2: Evaluation of Parameter Ranking. Both the MAP and MRR indicates that our approach is a better way to rank the
parameters.

sible answers this friend may reply with. For each task listed
in Table 1, we post 20 jobs on CF and collect 60 question-
answer pairs from 20 different workers. Second, the experi-
ment of parameter filtering is also conducted on CF. As men-
tioned in the previous section, for each parameter, we ask 10
workers to judge if this parameter is “unnatural”. We filter
out the parameters that at least 70% of workers judge as “un-
natural”. The remaining parameters after filtering are shown
in Table 1. Finally, for each task, we take all collected QA
pairs and asked 10 unique workers to select the most relevant
parameters with a confidence score. We then summed up all
of the confidence scores (1, 2, or 3) that each parameter re-
ceived as the rating score. In total, 77 unique workers partic-
ipated in the QA collection experiments. 23 unique workers
participated in the parameter filtering experiments, and 26
unique workers participated in the QA-parameter matching
experiments.

Our parameter rating process essentially performs a rank-
ing task on all parameters. Therefore, we measure our pro-
posed approach by utilizing two common evaluation metrics
in the field of information retrieval, i.e., the mean average
precision (MAP) and mean reciprocal rank (MRR). In our
evaluation, each API is treated as a query, and the param-
eters are ranked by the rating score produced by our QA-
parameter matching process. Similar to the process of an-
notating the relevant documents in the field of information
retrieval, we hire a domain expert to annotate all the param-
eters that are appropriate for a dialog system as our gold-
standard labels.

We implemented three baselines and asked crowd workers
to rate parameters based on 3 different instructions. We first
explained the overview of dialog systems and our project
goal to workers, and then showed the following instructions,
respectively:

• Ask Siri: Imagine you are using Siri. Please rate how
likely you are to include a value for this parameter in your
question?

• Ask a Friend: Imagine that you were not able to use the
Internet and call a friend for help. How likely are you say
include this information when asking your friend?

• Not Unnatural: This baseline directly takes the results
from the “parameter filtering” stage, and calculates the
percentage of workers who rate the parameter as “not un-
natural”.

10 unique workers were recruited on CrowdFlower to rate
each parameter on a 5-star rating scale. Parameters were
ranked using their average scores. The detailed evaluation
results are shown in Table 2. Our QA-parameter matching
approach largely outperforms all three baselines. Further-
more, both the high score of MAP and MRR strongly sug-
gest that the unskilled crowd is able to produce a ranking
list of API parameters that are very similar to that of domain
expert’s.

Note that we do not consider Siri a directly comparable
system to Guardian. With the help of the crowd, Guardian
acts quite differently from Siri, and is capable of working
with the user to refine their initial query through a multi-
turn dialog, while Siri focuses only on single-turn queries.
Guardian works reasonably well in arbitrary domains (APIs)
without using knowledge bases or training data, and can also
handle the out-of-domain tasks that Siri cannot handle. More
importantly, for any arbitrary web APIs, Guardian can col-
lect conversational data annotated with filled parameters to
generate response templates for automated dialog systems
like Siri.

Experiment 2: Real-time Crowd-Powered
Dialog System

Based on the results of Experiment 1, we implement and
evaluate Guardian on top of 3 web APIs: the Yelp Search
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Web API Parameter
Name

Parameter
Desc

Avg. Parameter
Filled Time(s)
(mean / stdev)

JSON
Filled Time(s)
(mean / stdev)

#Turn
JSON
Valid
Rate

TCR
Domain

Referenced
TCR

Yelp Search
API

term,
location

query term,
location 48.35 21.69 61.70 27.41 2.80 0.90 1.00 0.96

(Tomko 2005)

Rotten
Tomatoes q query term 23.70 30.18 24.90 30.45 1.80 0.60 1.00 0.88

(Tomko 2005)

Weather
Underground query zip code

of location 69.50 136.04 70.60 135.99 2.60 0.90 0.90 0.94
(Lee et al. 2009)

Table 3: Dialog System Evaluation Result. This results demonstrates the average performance of Guardian out of 10 trials.
Parameter filled time indicates the average time the system spends to fill one given parameter since the end of the user’s first
dialog turn. JSON filled time indicates the time Guardian spends to acquire the JSON string from the web API since the end of
the user’s first utterance input. Number of turns reflects the number of times that the user talks to the system to complete a task.
JSON valid rate indicates the percentage of times that the JSON string returned by the API call contains useful information to
complete the task. Task completion rate (TCR) indicates percent completion of the task. For reference, TCRs of the automated
systems reported in literature are also listed (but note that the numbers are not directly comparable).

API 2.03 for finding restaurants, the Rotten Tomatoes API
for finding movies4, and the Weather Underground API5 for
obtaining weather reports.

Implementation
Guardian was implemented as a spoken dialog system
that takes speech input and generates text chats as re-
sponses. The input speech was firstly transcribed by using
Google Chrome’s implementation of the Web Speech API in
HTML5. The speech transcript was then displayed in real-
time on both user’s and crowd workers’ interfaces.

All the functionalities mentioned in this paper were im-
plemented. We utilized a game-like task design and inter-
faces (as shown in Figure 1) to incorporate all the features.
From the perspective of a worker, the workflow are as fol-
lows: Once a worker accepts the task, the dialog manage-
ment system first asks the worker the existences of one or
more particular parameters. If the worker determines a pa-
rameter occurs in the current conversation, the system will
further ask the worker to provide the value of this parameter.
Behind the scene, Guardian adopts an ESP-game-like mech-
anism to find the matched answer among all workers, and
uses the matched answers as parameter values. As shown
in Figure 5, the dialog management system keeps track on
current dialog state based on parameter status, and automat-
ically ask the user corresponding questions.

Once all the required parameters are filled, Guardian will
attempt to call the Web API with the filled parameters. If an
JSON object is successfully returned by the Web API, the
worker will then be shown with an interactive visualization
of the JSON object (Figure 6) so that the results can be used
by the worker to answer the user’s questions.

Guardian uses a voting system to achieve consents among
all workers. If a worker proposes a response, this request

3http://www.yelp.com/developers/documentation/v2/
search api

4http://developer.rottentomatoes.com/
5http://www.wunderground.com/weather/api/

will be immediately sent to all other active workers of the
same task. Only the responses that most workers agree with
will be shown to the end user.

Currently, Guardian is fully running on Amazon Mechan-
ical Turk. 10 workers were recruited to hold each conversa-
tion together.

Experimental Result
To test Guardian, we follow an evaluation method similar
to the one used to evaluate Chorus (Lasecki et al. 2013):
using scripted end-user questions and tasks. We first gener-
ated a script and task for each API before the experiments,
which researchers followed as closely as possible during tri-
als, while still allowing the conversation to flow naturally.
The tasks and scripts for each API are as follows:
• Yelp Search API: Search for Chinese restaurants in Pitts-

burgh. Ask names, phone numbers, and the addresses of
the restaurants.
• Rotten Tomatoes API: Look for the year of the movie

“Titanic” and also ask for the rating of this movie.
• Weather Underground API: Look for current weather,

and only use zip code to specify the location. Ask for the
temperature and if it is raining now.
For each condition, we conducted 10 trials in a lab set-

ting. We manually examined the effectiveness of the infor-
mation in the resulting JSON object and the response cre-
ated by the crowd. We defined task completion as either the
obtained JSON string containing information that answers
users’ questions correctly, or crowd workers respond to the
user with effective information despite of the status of the
web API. The performance of Guardian is shown in Table 3.

In terms of the task completion rate (TCR), Guardian per-
formed well on all three APIs with an average TCR of 0.97.
The crowd workers were able to fill the parameters for the
web APIs and generate responses based on the API query re-
sults. The TCR reported by the automated SDS of the same
domain was also listed for comparison. Note that the TCR
and SDS values were not directly compatible.
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Case Study
In this section, we demonstrate some example chats in the
experiments to show the characteristics of our system.

Parameter Extraction In our experiments, the crowd
demonstrated the ability to extract parameters with a multi-
player ESP-game-like setting. For instance, in the following
chat, the crowd identified the query term (q) as “Titanic”
right after the first line. With the correct parameter value,
the RottenTomatoes API then correctly returned useful in-
formation to assist the crowd.

user: hello I like to know some information about
the movie Titanic

[parameter extracted]: q = “TITANIC”
user: the movie
user: Titanic
guardian: < URL of IMDB >
user: < ASR error > is the movie
guardian: < URL of Rotten Tomatoes >
user: I like to know the year of the movie
user: and the rating of this movie
guardian: 1997
guardian: 7.7

Dialog Management In the experiment, our dialog man-
agement system is capable of asking questions that require
missing information. For example, in the following chat, the
system asks a question for acquiring “term” from the user:

user: < ASR error > can I find some food
[parameter status]: term = null, location = null
guardian [automated response]: What do you want

to eat?

In the following example, the crowd first agreed on the
query term (Chinese), but still needs to determine the loca-
tion. Therefore, the system asks the follow-up question for
location.

user: < ASR error > can I get Chinese restaurant in
Pittsburgh
user: please tell me the phone number
[parameter status]: term = Chinese, location =

(pending)
guardian [automated response]: Where are you?
user: I am in Pittsburgh

The Crowd Recovers Invalid JSON In Guardian, the
crowd has two ways to complete a task. First, workers can
fill in API parameters and choose a response from the JSON
that is returned. Second, workers can propose responses
through a propose-and-vote mechanism. As a result, the API

does not need to return a valid response for Guardian to re-
spond correctly. In our experiments, most tasks were com-
pleted using the API response. The crowd generated their
own messages when the API returned an error message
within the JSON response, or the crowd found that the re-
turned information was incorrect. In other words, the crowd
in our system is able to recover from the errors that occurred
in previous stages. Therefore, the TCR in Table 3 is higher
than JSON valid rate.

The following are partial chats where the crowd overcame
the null API results. In this example, all parameter values
provided by the crowd were unmatched, so the API was not
triggered at all. On one hand, despite of the absence of the
API, the crowd was still able to hold a conversation with the
user and complete the task. On the other hand, compared to
the average number of turns as shown in Table 3, the crowd
used more conversational turns to complete this task. More-
over, when the API’s result was absent, some crowd workers
could be confused and provided noisy responses, e.g., asking
the user to look outside.

user: is it raining now
user: < ASR error >
guardian: location please
user: sorry I only know the zip code
user: < ASR error > 15232 < ASR error >
guardian: Where, which zip code?
user: my location is < ASR error > zip code 15232
guardian: What is the weather in your location?
user: sorry I only know the zip code
user: the zip code here is
guardian: hello user, Pittsburg PA ! Let me look.
user: sorry 15232
[parameter status]: location = (no matched an-

swer found)
guardian: Look outside and tell me the weather

please.
guardian: http://www.weather.com/weather/

hourbyhour/l/Pittsburgh+PA+15232:4:US

Template Generation

We also analyzed the click data collected in the experiments
to demonstrate the feasibility of generating a response tem-
plate. As mentioned above, Guardian records two types of
data when generating the response: the proposed response
text, and the click data. When the crowd workers explore
the interactive visualization of the JSON object, we keep
track of all filed names and values that the crowd clicked
through. From our experiments, a total of 273 unique clicks
were collected, and 77 were from the Yelp Search API. We
manually annotated the distribution of the category of the
fields (Table 4). After filtering out the URLs and the clicks
that occurred in the first layer of the JSON object, this result
suggests a promising future of capturing important fields.
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Field Category # %
Number of Business Retrieved
(1st entry of the top layer of JSON) 27 35.1%

URL 17 22.1%

Name 12 15.6%

Phone Number 9 11.7%

Neiborhood or Address 3 3.9%

Review Count 3 3.9%

Rating 2 2.6%

Snippet Text 2 2.6%

Latitude and Longitude 1 1.3%

Menu Date Updated 1 1.3%

Sum 77 100.0%

Table 4: Distribution of the crowd worker’s mouse clicks
when exploring the Yelp Search API’s JSON result. This
distribution reflects the important fields in the JSON object.

Discussion
In this section, we discuss some practical issues when im-
plementing the system, as well as some additional insights
from creating Guardian.

Portability and Generalizability

On one hand, the Guardian framework has a great porta-
bility. It is worth mentioning that we ported our original
Guardian system based on the Yelp Search Yelp to two other
web APIs performed in the on-line phase experiments in less
than one day. It only requires the implementation of a wrap-
per of a given web API that the system is able to send the
filled parameters to the API. All other remaining work can
be performed by the crowd. The system’s great portability
makes it possible to convert hundreds of more web APIs to
dialog systems.

On the other hand, some challenges do exists when we
plan to generalize this framework. In our experiment, the
Weather Underground API has a more strict standard about
the format of the input parameter value than other two APIs.
As a consequence, the “JSON valid rate” significantly drops,
mainly due to the incorrect input format. Although this prob-
lem can be easily fixed by adding an input validator, it raises
two important questions about generalizability: First, we
could domain-specific knowledge – such as adding an in-
put validator for a specific API – be this would be the main
bottleneck in integrating hundreds or thousands of APIs into
Guardian? (If yes, how do we overcome this?) Second, not
all web APIs are created equal – some are more easily trans-
lated into a spoken dialog system than others. Additionally,
as mentioned in the Introduction section, there are more than
13,000 web APIs, so how do we correctly choose which one
to use for a given query?

Connections to Modern Dialog System Research
Our work is largely inspired by the research of modern
dialog systems, e.g., slot filling and dialog management.
To assess our work, we compare our selected parameters
for Yelp Search API to the slots suggested by the modern
research of dialog systems on a similar task, i.e., restau-
rant queries. “Cambridge University SLU corpus” (Hender-
son et al. 2012) is a dialog corpus of a real-world restau-
rant information system. It suggests 10 slots for a restau-
rant query task: “addr”(address), “area”, “food”, “name”,
“phone”, “postcode”, “price range”, “signature”, “task”, and
“type”. By comparing these slots against the selected param-
eters of Yelp API in our work, the “location” parameter can
be mapped to the “addr” and “area” slots, and our “term” and
“category filter” can be mapped to the “food” slot. From the
perspective of dialog system research, this comparison sug-
gests that the offline phase of the Guardian framework can
also be viewed as a crowd-powered slot induction process,
and it is able to produce a compatible output with expert-
suggested (Henderson et al. 2012) or automatic induced slots
(Chen, Wang, and Rudnicky 2013).

Conclusion and Future Work
In this paper, we have introduced a crowd-powered web-
API-based spoken dialog system (SDS) called Guardian.
Guardian leverages the wealth of information in web APIs
to enlarge the scope of the information that can be auto-
matically found. The crowd is then employed to bridge the
SDS with the web APIs (offline phase), and a user with
the SDS (online phase). Our experiments demonstrated that
Guardian is effective in associating questions with impor-
tant web API parameters (QA-parameter matching), and can
achieve a task completion rate of 97% in real-world dialog
experiments on three different tasks. In the future, these dia-
log systems could be generated dynamically, as the need for
them arises, making automation a gradual process that oc-
curs based on user interests. Intent recognition can also aid
this lazy-loading process by determining a user’s goal and
drawing on prior interactions, even by others, to collabora-
tively create these systems.
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Predicting protein structures with a multiplayer online game.
Nature 466(7307):756–760.
Ferguson, G.; Allen, J. F.; et al. 1998. Trips: An integrated
intelligent problem-solving assistant. In AAAI/IAAI, 567–
572.
Hartmann, B.; Wu, L.; Collins, K.; and Klemmer, S. R.
2007. Programming by a sample: Rapidly creating web ap-
plications with d.mix. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’07, 241–250. New York, NY, USA: ACM.
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