
Combining Non-Expert and Expert Crowd Work to
Convert Web APIs to Dialog Systems

Ting-Hao K. Huang
tinghaoh@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA USA

Walter S. Lasecki
wlasecki@cs.rochester.edu

University of Rochester
Rochester, NY USA

Alan L. Ritter
ritter.1492@osu.edu

The Ohio State University
Columbus, OH USA

Jeffrey P. Bigham
jbigham@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA USA

Abstract
Thousands of web APIs expose data and services that would
be useful to access with natural dialog, from weather and
sports to Twitter and movies. The process of adapting each
API to a robust dialog system is difficult and time-consuming,
as it requires not only programming but also anticipating what
is mostly likely to be asked and how it is likely to be asked.
We present a crowd-powered system able to generate a nat-
ural language interface for arbitrary web APIs from scratch
without domain-dependent training data or knowledge. Our
approach combines two types of crowd workers: non-expert
Mechanical Turk workers interpret the functions of the API
and elicit information from the user, and expert oDesk work-
ers provide a minimal sufficient scaffolding around the API to
allow us to make general queries. We describe our multi-stage
process and present results for each stage.

Introduction
In this paper, we propose a crowd-powered framework to
interact with web APIs through a conversation interface.
We illustrate two major phases: the on-line phase and off-
line phase. In the on-line phase, we propose a crowd-
powered system architecture that implements real-time con-
versational interaction between users and web APIs; in the
off-line phase, we propose a crowdsourcing workflow that
“translates” one web API to real-world questions, which is
the foundation to empower our real-time dialog system.

We leverage prior work in human computation to boot-
strap the creation of automated dialog systems. Human com-
putation has been shown to be useful in many areas, includ-
ing writing and editing (Bernstein and et al. 2010), and im-
age description and interpretation (Bigham, et, and al. 2010;
Von Ahn and Dabbish 2004). Crowd responses can also be
gathered very quickly. VizWiz elicits nearly real-time re-
sponses from the crowd using a queuing model (Bigham,
et, and al. 2010). Chorus is a system that enables a real-time
conversation with a crowd of workers as if they were a single
conversational partner (Lasecki and et al. 2013).

On-line Phase: Working System
In this paper, we illustrate a crowd-powered framework that
operates an API through a real-time conversational interface,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which is inspired by the slot-filling process of modern dia-
log systems. The process can be addressed in 3-stages (Fig-
ure 1): First, in the “parameter value elicitation” stage, our
system asks questions to request for the value of a target pa-
rameter. Second, in the “parameter value extraction” stage,
our system recruits crowd to extract the value of a target pa-
rameter from the user’s answer. For all useful parameters,
the system is able to run through stages 1 and 2 to collect
their values, and the API handler is then able to decide when
to trigger the API based on the parameter-filling status. Fi-
nally, when we get the results returned by the API, the re-
sponse format is usually technical, e.g., JSON or XML. In
the “response generation” stage, we recruit workers to con-
vert the result into a natural language. From the perspective
of modern dialog systems, in our framework, the API acts
like a frame, the parameters act like slots, and the API han-
dler is in charge of dialog management.

Stage 1: Parameter Value Elicitation In this stage, ques-
tions are presented to the user and their answers are
recorded. The key piece of this component is a knowledge-
base that maintains the information of all parameters and as-
sociated questions, which is prepared in the off-line phase.
When the system is running, the parameter value elicitation
component selects questions to ask the user based on the
current status and the dialog history, the dependency and im-
portance of parameters, and a pre-defined policy. API query
parameters are then extracted from the user’s response.

Stage 2: Parameter Value Extraction We propose a
crowd-powered approach to extract the parameter values
from natural language text. There are two underlying tasks
in this stage: understanding the semantics of the given pa-
rameter by reading its technical descriptions, and extracting
the value from a natural language conversation. Unskilled
crowd workers are recruited to accomplish these two tasks.

Stage 3: Response Generation The last stage of the di-
alog system process is to convert the API response object,
e.g., JSON or XML data, into natural language text. There
are two underlying subtasks in this stage: understand the in-
formation (which is in a machine-processable data format),
and describe the information in a natural language. We also
propose recruiting unskilled workers to perform this task.

Figure 1: On-line Phase: Crowd-powered Real-time Conversational Interface to Operate API

Off-line Phase: Preparation Process
The on-line system above needs 3 pieces of knowledge:
First, the technical details of the API; Second, the param-
eters that were selected for the dialog system and the rela-
tions between parameters; Finally, questions are associated
with each selected parameter. In the off-line phase, we de-
sign a workflow that allows unskilled and skilled workers to
work together to collect these facts. The process is:

Stage 1: Question & Answer Collection First, we collect
the questions associated with the task. We ask crowd work-
ers the following: “A friend wants to TASK DESCRIPTION
and is calling you for help. Please enter one question you
would ask them to help accomplish their task.” After each
worker asks a question, we ask the worker to write down a
possible answer. This process is then repeated to collect the
next question-answer (QA) pairs.

Stage 2: Parameter Filtering In Stage 2, we perform a
filtering process with an unskilled crowd to reduce candi-
date parameter set. Scalability is a challenge that often arises
when applying general voting mechanisms to API parame-
ters. Our solution is to adopt a filtering step before the voting
stage. We show all of the parameters (along with the param-
eters name, type, and description) to the workers, and ask
them to select all of the “unnatural” items which are not
very likely to be mentioned in a real conversation, or are
obviously designed for computers and programmers.

Stage 3: QA-Parameter Mapping In Stage 3, we map the
QA pairs collected in Stage 1 against the remaining param-
eters from Stage 2. We display one QA pair along with all
parameters, and ask workers which parameters’ information
is provided in the answer. For each QA pair, the workers
are first asked to pick the best parameter, and then rate their
confidence level. This process not only finds a good set of
parameters for the dialog system application, but also find
good questions associated with each selected parameter.

Wrapping APIs with Expert Workers Web APIs lack a
unified interface to access their parameters and generally re-
quire reading and understanding documentation. We there-
fore recruit expert workers from oDesk to implement an API
Handler based on the given API and selected parameters.
This kind of work requires basic programming skills, and
thus cannot be distributed to unskilled workers. The API
Handler should be robust enough for basic errors and pro-
vide some level of validation of the input values.

Experiments and Discussion
To explore the feasibility of our framework, we conduct ex-
periments with the well-known Yelp restaurant recommen-
dation API, on both off-line and on-line phase.

For the off-line phase, we collected 40 QA pairs for the
task “find a restaurant to eat at”, and applied a voting pro-
cess in which Turk workers filtered out 13 of 22 parameters.
The remaining 9 parameters are further matched with the 40
QA pairs by crowd. Finally, we select the top 3 matched pa-
rameters, “category filter”, “term”, and “location” to create
the on-line system; Based on the experimental results of the
off-line phase, we run experiments for the on-line phase to
test the ability of the non-expert crowds to understand the se-
mantics of the parameters, to extract parameter values, and
to convert data into natural text. Most values extracted by
crowd were semantically correct and valid Yelp parameters.
Around 65% of responses created by crowd mention at least
one of the top two restaurants in the Yelp search results.

For oDesk workers, we posted a $35.00 USD job, waited 6
hours for responses, and then chose the least expensive offer
($15.00 USD). We followed up with the worker to describe
additional details. The worker returned a completed Python
script within 12 hours that implemented the whitelist for the
category filter parameter as an associative array.

Our experimental results demonstrate the feasibility of
our approach. In the future, these dialog systems could be
generated dynamically, as the need for them arises, mak-
ing automation a gradual process that occurs based on user
habits. Since it might require more than one session to elicit
enough information from the user to learn the necessary pa-
rameters, the system can learn over time, without having to
lock the user into a singe session. Intent recognition can also
aid this lazy-loading process by determining a user’s goal
and drawing on prior interactions, even by others, to collab-
oratively create these systems.

References
Bernstein, M., and et al. 2010. Soylent: a word processor
with a crowd inside. In UIST.
Bigham, J. P.; et; and al. 2010. Vizwiz: nearly real-time
answers to visual questions. In UIST.
Lasecki, W. S., and et al. 2013. Chorus: a crowd-powered
conversational assistant. In UIST.
Von Ahn, L., and Dabbish, L. 2004. Labeling images with
a computer game. In CHI.

